Math 650 Exam 2 November 1, 2018

Solution Key

1. Consider the system

\[\dot{x} = x + x^2y, \quad \dot{y} = x^2 - x - y. \]

(a) Show that the origin is an equilibrium and is a saddle.

(b) Approximate the unstable manifold

\[W^u(0, 0) = \{ y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots \} \]

by finding the first three nonzero terms in the above approximation.

(c) Can you guess what the stable manifold \(W^s(0, 0) \) is?

Sln Key: (a) It’s clear that the origin is an equilibrium. The coefficient matrix of the linearization at \((0, 0)\) is \(A = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \), which has e-values \(\lambda_1 = 1 \) and \(\lambda_2 = -1 \) with associated e-vectors \(V_1 = (1, -1/2)^T \) and \(V_2 = (0, 1)^T \).

(b) The unstable manifold passes through the origin and is associated to \(\lambda_1 \) and \(V_1 \), and hence, \(a_0 = 0 \) and \(a_1 = -1/2 \). Thus, it is the graph of \(y = -1/2x + a_2 x^2 + a_3 x^3 + \cdots \). One has, on one hand, \(\dot{y} = (-1/2 + 2a_2 x + 3a_3 x^2 + \cdots) \dot{x} \); that is,

\[\dot{y} = (-1/2 + 2a_2 x + 3a_3 x^2 + \cdots) (x - 1/2x^3 + a_2 x^4 + a_3 x^5 + \cdots). \]

On the other hand, from the equation for \(y \), one gets

\[\dot{y} = x^2 - x + 1/2x - a_2 x^2 - a_3 x^3 + \cdots. \]

Comparing the terms of like powers in \(x \), one gets \(a_2 = 1/3 \) and \(a_3 = -1/16 \).

Thus, the unstable manifold is the graph of

\[y = -\frac{1}{2}x + \frac{1}{3} x^2 - \frac{1}{16} x^3 + \cdots. \]

(c) The stable manifold is the \(y \)-axis since the \(y \)-axis is invariant and is tangent to \(V_2 \) (associated to \(\lambda_2 = -1 \)).

1
2. (a) Show that the origin is a non-hyperbolic equilibrium of

\[\dot{x} = x^2 y + y^2, \quad \dot{y} = -y + x^2 - xy. \]

(b) Sketch the phase plane portrait of the linearized system at (0, 0).

(c) Approximate a center manifold \(W^c(0, 0) \) and sketch the phase plane portrait of the nonlinear system near the origin.

Soln Key: (a) The coefficient matrix of the linearization at (0, 0) is \(A = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \), which has e-values \(\lambda_1 = 0 \) and \(\lambda_2 = -1 \) with associated e-vectors given by the \(x \)-axis and the \(y \)-axis, respectively. In particular, the origin is a non-hyperbolic equilibrium.

(b) For linearized system, the \(x \)-axis consists of equilibria, each vertical line is invariant and the corresponding equilibrium is stable within the line.

(c) A center manifold \(W^c(O) \) is given by \(y = a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots = x^2(a_2 + a_3 x + a_4 x^2 + \cdots) \). One has, on one hand,

\[\dot{y} = (2a_2 x + 3a_3 x^2 + 4a_4 x^3 + \cdots) \dot{x} = x^5(2a_2 + 3a_3 x + \cdots)(a_2 + a_3^2 + (a_3 + 2a_2a_3)x + \cdots); \]

on the other hand, \(\dot{y} = -y + x^2 - xy = (1 - a_2)x^2 - (a_2 + a_3)x^3 - (a_3 + a_4)x^4 + \cdots. \)

Comparing the terms of like powers in \(x \), one gets \(a_2 = 1, a_3 = -1, a_4 = 1, \) etc..

Thus, a center manifold \(W^c(O) \) is given by \(y = x^2 - x^3 + x^4 + \cdots. \)

On \(W^c(O), \dot{x} = x^4(2 - 3x + \cdots) \), and hence, the equilibrium is a saddle-node.
3. (a) Show that the following system is a Hamiltonian.

\[\dot{x} = x + 2y, \quad \dot{y} = -4x^3 - y. \]

(b) Find a Hamiltonian function \(H(x, y) \) for the system.

(c) Find the equilibria and determine their types.

Soln Key: (a) \(f_y + g_y = (x+2y) + (-4x^3-y) = 1-1 = 0 \). So the system is a Hamiltonian.

(b) It follows from \(h_y = f = x + 2y \) and \(H_x = -g = 4x^3 + y \) that \(H(x, y) = x^4 + xy + y^2 \).

(c) Equilibria of the dynamical system are critical points of \(H \) and they are

\[O = (0, 0), \quad E_+ = \left(-\frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}\right), \quad E_- = \left(-\frac{1}{2\sqrt{2}}, -\frac{1}{4\sqrt{2}}\right). \]

It follows from \(H_{xx} = 12x^2, \ H_{yy} = 2, \ H_{xy} = 1 \) that \(D(x, y) = H_{xx}H_{yy} - H_{xy}^2 = 24x^2 - 1 \).

Thus, \(D(O) = -1 < 0 \) so that \((0, 0)\) is a saddle critical point of \(H \), and hence, a saddle for the dynamical system.

\(D(E_{\pm}) = 3 > 0 \) and \(H_{yy}(E_{\pm}) > 0 \) so \(E_{\pm} \) are local mini. of \(H \), and hence, are centers for the dynamical system.

Remark. An alternative way to determine the types of the equilibria is to determine the eigenvalues of the linearization at each equilibria. But, for the equilibria \(E_{\pm} \) where eigenvalues are pure imaginary, one needs the fact that the system is a Hamiltonian to claim that they are centers for the nonlinear dynamical system.
4. (a) Find a potential function $V(x)$ for the Newtonian system $\ddot{x} = 3x^2$.

(b) Sketch the phase plane portrait for its equivalent form $\dot{x} = y$, $\dot{y} = 3x^2$.

Soln Key: (a) A potential function $V(x)$ is given by

$$V(x) = -\int 3x^2 \, dx = -x^3.$$

It has only one critical point $x = 0$, which is a saddle critical point of V. Therefore, the origin is a cusp equilibrium of the equivalent planar system.

(b) The phase plane portrait is sketched below.
5. Sketch the phase plane portrait for the Newtonian system

\[\dot{x} = y, \quad \dot{y} = -V'(x) \]

where the graph of \(V \) is given below. Note that \(V(-1) = V(1) \).
6. Sketch the phase plane portrait for the Newtonian system

\[\dot{x} = y, \quad \dot{y} = -V'(x) \]

where the graph of \(V \) is given below. Note that \(V(-1) < V(1) \).