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Abstract. We study the interplay between effects of disease burden on the host population and
the effects of population growth on the disease incidence, in an epidemic model of SIR type with
demography and disease-caused death. We revisit the classical problem of periodicity in incidences
of certain autonomous diseases. Under the assumption that the host population has a small intrinsic
growth rate, using singular perturbation techniques and the phenomenon of the delay of stability loss
due to turning points, we prove that large amplitude relaxation oscillation cycles exist for an open set
of model parameters. Simulations are provided to support our theoretical results. Our results offer
new insight to the classical periodicity problem in epidemiology. Our approach relies on analysis far
away from the endemic equilibrium and contrasts sharply with the method of Hopf bifurcations.
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1. Introduction. Investigation of oscillations in disease incidence is of funda-
mental importance in mathematical epidemiology. Empirical data of disease incidence
has shown clearly identifiable cyclic patterns in many common diseases, including dis-
eases for which environmental influences do not appear to play an important role, such
as measles, pertussis, chicken pox and mumps [2, 20]. Mechanisms for this type of
“autonomous oscillation” have been extensively studied in the mathematical epidemi-
ology literature. These include, together with papers that introduced them, time
delays in the transmission process [14, 20], varying total population size with density
dependent demography and transmission [1, 22], nonlinear incidence forms [16], dis-
crete age-structures with a non-symmetric contact matrix among age groups [8], and
seasonality in the transmission process in both deterministic and stochastic models
[3, 4, 12, 20]. The mathematical approach for these earlier work has been bifurca-
tion analysis (e.g. Hopf bifurcation theory), which analyzes model behaviours in a
neighbourhood of an endemic equilibrium. In the case of Hopf bifurcation, certain
degree of complexity needs to be introduced into the transmission process to produce
instability of the endemic equilibrium, and the bifurcation may occur in parameter
regimes that are not biologically realistic. For more complete reviews of related work,
we refer the reader to [2, 13].

In the present paper, we apply a singular perturbation approach to this inves-
tigation. Our goal is to reveal a simple and biologically sound mechanism that can
produce large-amplitude oscillations in disease incidence. Our basic assumption is
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that the host population has a small intrinsic growth rate ε > 0, the difference be-
tween the natural birth rate and the natural death rate. This slow-growth assumption
is not biologically unrealistic. Demographic data has shown that annual population
growth rates in many industrialized countries have been only slightly above zero, in
the range 0.01-0.001 per year, for a long period of time [26]. The slow-growth assump-
tion may also apply to animal population on live-stock farms, where, for economic
reasons, population may be kept near its carrying capacity where the growth is close
to zero. Using the intrinsic growth rate ε as a perturbation parameter, we show that a
standard SIR epidemic model can be reformulated as a singularly perturbed problem.
Applying techniques from geometric singular perturbation and global center manifold
theory, we prove that, for an open and biologically realistic parameter regime, stable
periodic oscillations exist in rather simple SIR models. Furthermore, our analysis
demonstrates that the periodic solution has a large amplitude of order O(1). This
overcomes a common drawback of Hopf bifurcation analysis where the bifurcating
periodic solutions are of small amplitude.

Our analysis reveals an important characteristic of the model, the existence of a
turning point. This is a point on the slow manifold with the population size at the
critical community size to support an epidemic [2]. Accompanying the presence of
the turning point is a critical phenomenon called delay of stability loss, in which a
solution starts with a fast motion to approach a vicinity of the slow manifold, moves
slowly along the slow manifold, passes through the turning point and continues the
slow motion along the slow manifold, then, up to some point, moves away from the
slow manifold in a fast motion (see, e.g., [7, 17, 18, 23, 24, 25]). In our model, the
slow manifold is in the disease-free region, and the time period a solution spends in
the vicinity of the slow manifold corresponds to the inter-epidemic period with low
disease incidence: the period between epidemics (fast dynamics) away from the slow
manifold. The fast-slow oscillations characterize the global dynamics of the model
and capture the qualitative nature of the oscillatory behaviors in empirical disease
data. Our analysis of the simple SIR models has demonstrated that, the existence of
turning points and the associated delay of stability loss due to the slow growth of the
population, offers a simple and robust mechanism for sustained oscillations of disease
incidence.

Mathematically, our singular perturbation analysis is carried out for a 3-dimensional
system, and the presence of turning points leads to a significant challenge. At a turn-
ing point, two eigenvalues are zero. This results in the loss of normal hyperbolicity of
the 1-dimensional slow manifold, and the standard geometric singular perturbation
theory of Fenichel [9, 10] no longer applies. Another difficulty we encounter in the
analysis is having to deal with the nonlinear dynamics in a large neighbourhood of
the slow manifold. Such a difficulty does not seem to appear in the analysis of many
other biological models, e.g., in the analysis of relaxation oscillation of a predator-prey
model [19].

The primary objective of our paper is to establish the mathematical framework
and carry out detailed mathematical analysis for the singular perturbation approach
to the study of epidemic models. We have chosen a simple SIR model to keep the
mathematical technicality to its minimum, and the analysis is applicable to more
complex models. In a subsequent paper, we will investigate relaxation oscillations
in an SEIR model and give a more in depth discussion of biological implications of
the mathematical results. Singular perturbation approach and associated asymptotic
analysis have been successfully applied to the analysis of relaxation oscillation phe-
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nomena in many mechanical, physical, chemical, and biological systems. We hope
that our study will lead to more applications of singular perturbation analysis to the
study of disease transmission processes.

2. The model and statements of main results.

2.1. The model problem. Consider the spread of an infectious disease in a
host population of size N . Partition the population into susceptible, infectious, and
recovered classes, and denote the sizes by S, I, and R, respectively, so that N =
S + I +R.

In the absence of the disease, we assume that N satisfies

N ′ = εg(N),

where constant ε > 0 is assumed to be small. A typical example of g(N) is the
quadratic form N(1 − N/N∗), such that N has the logistic growth with carrying
capacity N∗ and intrinsic growth rate ε. It is natural to require the following.

(A1) The function g(N) satisfies

g′′(N) < 0, g(0) = g(N∗) = 0 for some N∗ > 0.

As a consequence, we have the following properties.
Lemma 2.1. Assume (A1). Then, N∗ is unique, and g(N) > 0 for N ∈ (0, N∗)

and g(N) < 0 for N > N∗.
We further assume that the per capita natural death rate is a constant d > 0,

and newborns b(N) has a density dependent form b(N) = dN+εg(N). For simplicity,
we assume that all newborns are susceptible to the disease. We consider the type
of diseases that spreads through direct contact of hosts, and incidence is given by
h(S,N)I, where h(S,N) is a smooth function. We will assume the following basic
properties on h(S,N).

(A2) The function h(S,N) is increasing in S and h(0, N) = 0.

A specific form of h(S,N) that is commonly used is

h(S,N) =
β(N)Sq

K + S
, q ≥ 1, K ≥ 0.

This incidence form h(S,N)I includes the bilinear incidence βSI (with K = 0, q = 2),
nonlinear incidence βSq−1I (with K = 0, q > 2), standard incidence λSI

N (with

β(N) = λ/N,K = 0, q = 2), and the saturation incidence βSI
K+S .

The transmission process is demonstrated in the following diagram.

b(N) !! S
h(S,N)I !!

dS

""

!" #$pS

""

I
γI !!

dI+αI

""

R

dR

""



4 M. Y. Li, W. Liu, C. Shan, and Y. Yi

The parameter γ denotes the recovery rate, and p denotes vaccination rate for a
simple vaccination strategy. We assume that the infectious individuals suffer a disease-
caused death αI with a constant rate α. It is assumed that disease confers permanent
immunity, and all parameters are assumed to positive. The transfer diagram leads to
the following system of differential equations

S′ = b(N)− h(S,N)I − (d+ p)S,

I ′ = h(S,N)I − (d+ γ + α)I,

R′ = pS + γI − dR.

(2.1)

As a consequence, the total population size N satisfies

(2.2) N ′ = εg(N)− αI.

It follows that, for ε > 0 and α > 0, N varies with time, and model (2.1) is a
3-dimensional system.

Using b(N) = dN + εg(N) and replacing the R equation by (2.2), we rewrite the
model (2.1) as the following equivalent system

S′ = dN + εg(N)− h(S,N)I − (d+ p)S,

I ′ = h(S,N)I − aI,

N ′ = εg(N)− αI,

(2.3)

where a = d+ α+ γ. We study system (2.3) for ε ≥ 0 in the feasible region

D = {(S, I,N) ∈ R3 : S ≥ 0, I ≥ 0, N ≥ 0 and S + I ≤ N ≤ N∗}.

From Lemma 2.1 and equation (2.2) we know that N ′ < 0 if N > N∗. If follows that
the region D is positively invariant with respect to system (2.3) and globally attracts
all non-negative solutions of (2.3).

Global dynamics of model (2.3) for the case ε = 0 were studied in [11]. It was
shown that the essential dynamics consist of a local, stable, two dimensional invari-
ant manifold and, on the invariant manifold, a line of equilibria exists and all other
solutions are heteroclinic orbits each connecting a pair of equilibria. This is a highly
unstable structure and small perturbations can dramatically change the nature of the
global dynamic. We will study the global dynamics of (2.3) for the case ε > 0 and
show that, under certain conditions, there exists a stable relaxation periodic cycle for
small ε.

In the rest of this section, we describe the structure of the equilibria and their
stability, and state our main result on relaxation oscillations.

2.2. Structure of equilibria and statement of the main result. For ε ≥ 0,
(0, 0, 0) and (S∗, 0, N∗), with N∗ defined in (A1) and S∗ = dN∗/(d+p) are equilibria
of system (2.3).

Proposition 2.2. There are no other equilibria for ε > 0 if and only if

h(S(N), N) < a = d+ γ + α

for all N where

S(N) =
d

d+ p
N − ε

a− α

α(d+ p)
g(N).
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Furthermore, if h(S,N) < a for all S and N , then the equilibrium (S∗, 0, N∗) attracts
all solutions except (0, 0, 0). The global dynamics are trivial.

Proof. The first statement can be checked directly. Assume that h(S,N) < a
for all S and N . Then, for any initial condition other than (0, 0, 0), the solution
(S(t), I(t), N(t)) satisfies that I(t) → 0 as t → +∞ and, on the plane {I = 0},
(S(t), N(t)) → (S∗, N∗) as t → ∞.

In this work, we will focus on the cases where nontrivial dynamics are possible.
In view of the statements in Proposition 2.2, we assume the following.

(A3) The function h(dN/(d+ p), N) is non-decreasing for N ∈ (0, N∗). There is
a unique N0 ∈ (0, N∗) such that h(S0, N0) = a where S0 = d

d+pN0. Furthermore,
d

d+phS(S0, N0) + hN(S0, N0) > 0.

We note that (S0, 0, N0) in (A3) has both dynamical and biological significance.
In the case when h(S,N) = βS, the equation h(S0, N0) = a becomes βS0 = d+ γ+α
and thus S0 = (d + γ + α)/β. In the classical SIR model with no demography
(b = d = 0) and no disease-caused death (α = 0), we have S0 = γ/β, which is
known as the critical size of susceptible population to sustain an epidemic [2, 12].
The dynamical significance of point (S0, 0, N0) is that it is a turning point, whose
existence is the foundation of the relaxation oscillation phenomenon.

Lemma 2.3. Assume that (A3) holds. For ε > 0 small, there is a unique
equilibrium Eε = (Sε, Iε, Nε) with Sε, Iε, Nε > 0, and Eε → (S0, 0, N0) as ε → 0.

Proof. In addition to (0, 0, 0) and (S∗, 0, N∗), other equilibria of system (2.3) are
determined by

h(S,N) = a, I =
ε

α
g(N), S =

d

d+ p
N − ε

a− α

α(d+ p)
g(N).

The N coordinates are roots of

f(N ; ε) := h

(
d

d+ p
N − ε

a− α

α(d+ p)
g(N), N

)
− a = 0.

It follows from assumption (A3) that

f(N0; 0) = 0, fN(N0; 0) =
d

d+ p
hS(S0, N0) + hN (S0, N0) > 0.

An application of the Implicit Function Theorem gives that, for ε > 0 small, there
is Nε such that f(Nε; ε) = 0 and Nε → N0 as ε → 0. Note that the corresponding
I-coordinate is Iε =

ε
αg(Nε) > 0 for ε > 0 small.

Stability of equilibria of system (2.3) is described in the next result, whose proof
is given in Appendix I. Denote

∆0 =
( a

α
− d

d+ p

)
hS(S0, N0)g(N0)− (d+ p)gN (N0).(2.4)

Theorem 2.4. Assume that (A1), (A2) and (A3) hold. Then, for ε > 0 small,
(i) the equilibria (0, 0, 0) and (S∗, 0, N∗) are saddles each with two negative eigen-

values and one positive eigenvalue;
(ii) the equilibrium Eε always has a real negative eigenvalue and a pair of complex

conjugate eigenvalues. If ∆0 > 0, then the complex eigenvalues have a nega-
tive real part and Eε is locally stable; if ∆0 < 0, then the complex eigenvalues
have a positive real part and Eε is a saddle.
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A rough statement of our main result is given in the following. A more technical
statement (Theorem 4.3) of this result and its proof will be given in Section 4.

Theorem 2.5. Assume that (A1), (A2) and (A3) hold. Then, for system (2.3)
with ε > 0 small, one of the following holds

(i) the equilibrium Eε is a sink and it attracts all orbits except equilibria (0, 0, 0)
and (S∗, 0, N∗);

(ii) there exists an invariant annulus-like or disk-like two dimensional region that
attracts all but equilibria orbits and contains at least one stable periodic orbit.

We note that, for fixed ε > 0 small, as ∆0 varies from positive to negative, in
view of statement (ii) in Theorem 2.4, it is possible that a periodic solution can be
created through a supercritical Hopf bifurcation of Eε. This has been extensively
studied for many biological models in the literature. We will not pursue along this
direction. Instead, we will investigate the existence of a relaxation oscillation using a
global approach. More precisely, we will treat ε as a parameter, first understand the
limiting global behaviours when ε = 0, and then examine how a relaxation oscillation
is created for ε > 0, far from the endemic equilibrium Eε. In particular, the example
in Section 4.3 shows that a stable relaxation oscillation may exist even if Eε is stable.

3. Global dynamics of system (2.3) for ε = 0. In this section, we give a
complete description of the dynamics for the limiting system (2.3) at ε = 0. The
result extends the work in [11] for a semi-local description of the dynamics. We recall
that system (2.3) for ε = 0 is

S′ = dN − h(S,N)I − (d+ p)S,

I ′ = (h(S,N)− a)I,

N ′ = −αI,

(3.1)

with feasible region D = {(S, I,N) ∈ R3 : S ≥ 0, I ≥ 0, N ≥ 0, S + I ≤ N ≤ N∗},
which is positively invariant for (3.1).

It can be verified that the disease-free plane {I = 0} and the half-line

Z0 :=

{
S =

dN

d+ p
, I = 0, N ≥ 0

}

are both invariant under system (3.1). In particular, Z0 consists of equilibria of (3.1).

3.1. A complete characterization of dynamics of (3.1). On the invariant
plane {I = 0}, all solutions (S(t), I(t), N(t)) satisfy that

I(t) ≡ 0, N(t) ≡ N(0), and S(t) → d

d+ p
N(0) as t → ∞.

The set Z0 of equilibria attracts all solutions within {I = 0}.
The linearization at each point (dN/(d+ p), 0, N) ∈ Z0 is

⎛

⎝
−(d+ p) −h(dN/(d+ p), N) d

0 h(dN/(d+ p), N)− a 0
0 −α 0

⎞

⎠

with eigenvalues λ1 = 0, λ2 = −(d + p) < 0, and λ3 = h(dN/(d+ p), N) − a. The
eigenvectors associated with λ1 and λ2 span the plane {I = 0} and that associated
with λ3 is transversal to the plane {I = 0}. The eigenvalue λ3 = h(dN/(d+ p), N)−a
changes sign across the point (S0, 0, N0) ∈ Z0, where S0 and N0 are defined in (A3).
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0

I

S

N
Z

O

N0

Fig. 1. Heteroclinic structure of (2.3) with ε = 0

The complete dynamics for the case ε = 0 are described in the following result,
and depicted in Figure 1. The proof is given in Appendix I.

Theorem 3.1. Assume that (A2) and (A3) are satisfied. The the following
statements hold.

(i) Every solution of system (3.1) is bounded for t ≥ 0 and the set Z0 is the global
attractor;

(ii) The unstable manifold of each equilibrium (dN/(d+ p), 0, N) ∈ Z0 with N >
N0 is a heteroclinic orbit to an equilibrium (S̄, 0, N̄) ∈ Z0 with 0 < N̄ < N0.
The relationship N̄1 < N̄2 < N0 if N1 > N2 > N0 holds. Furthermore,
limN→∞ N̄ = N∞ ∈ (0, N0).

We denote by M(Z0) the two dimensional invariant manifold that consists of
heteroclinic orbits established in Theorem 3.1 - (ii), and define a map

H : (N0,∞) → (0, N0), H(N) = N̄

where N̄ is defined by the heteroclinic orbits in Theorem 3.1 - (ii). The invariant
manifold M(Z0) and the map H will play important roles in our results on relaxation
oscillations for model (2.3) with ε > 0.

3.2. Persistence of M(Z0) for ε > 0 small. We are interested in whether
or not the invariant manifold M(Z0) will persist for ε > 0 small; that is, for ε > 0
small, whether or not there is an invariant manifold Mε for system (2.3) so that
Mε → M(Z0) as ε → 0.

Recall that, when ε = 0, for each equilibrium w = ( d
d+pN, 0, N) ∈ Z0, the

eigenvalues of the linearization at w are

λ1 = 0, λ2 = −(d+ p), λ3 = h
( d

d+ p
N,N

)
− a.

Based on the relative size of eigenvalues, the consideration can be divided into two
cases.

Case 1: a = d + α + γ < d + p. It follows that h( d
d+pN,N) − a > −(d + p)

for all N ≥ 0. At each point w ∈ Z0, we have λ1 > λ2 and λ3 > λ2. Applying a
center manifold theorem in [5, 6] to the invariant set Z0, we obtain the existence of
a 2-dimensional center manifold W c(Z0). The center manifold W c(Z0) is invariant
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under (3.1), contains Z0 and all orbits bounded in the vicinity of Z0. At each w ∈ Z0,
the tangent space TwW c(Z0) is spanned by the eigenvectors associated with λ1 and λ3

(both are larger than λ2). Most importantly, the center manifold theorem guarantees
the persistence of W c(Z0) for ε > 0 small. In general, a center manifold may not
be unique but any center manifold will contain all orbits that are bounded in the
vicinity of Z0. Therefore, for this model problem, W c(Z0) coincides with M(Z0) and
is unique, and M(Z0) persists for ε > 0.

Case 2: a = d+α+γ ≥ d+p. In this case, there exists a unique N̂ ∈ [0, N0) such
that h( d

d+pN,N)−a > −(d+p) for N > N̂ but h( d
d+pN,N)−a ≤ −(d+p) for N ≤ N̂ .

The general results on center manifolds in [5, 6] cannot be applied to the whole set Z0

to obtain a two-dimensional center manifold. For any fixed δ > 0, the results in [5, 6]
can be applied to the subset Zδ

0 := Z0 ∩ {N ≥ N̂ + δ} but the corresponding center
manifold W c(Zδ

0 ) will only be a proper subset of M(Z0). It turns out, for ε > 0,
parts of relaxation oscillations could occur outside W c(Zδ

0 ) for all δ > 0. We take
the advantage of a crucial property that the set {I = 0} is invariant under system
(2.3) for all ε ≥ 0, and show that M(Z0) persists for ε > 0 small even though it is
not normally hyperbolic. This is established in Appendix II. This persistence result
appears to be contradictory to Mãné’s result that an invariant manifold is persistent
if and only if it is normally hyperbolic ([21]). It is not, since the persistence in Mãné’s
result is with respect to all small perturbations while the perturbations in our system
are special: they leave the set {I = 0} invariant. As mentioned above, it is possible
that a portion of a relaxation oscillation occurs over the region where N < N̂ . In
the limit as ε → 0, this portion approaches Z0 along the eigenvector associated with
−(p+ q) in general.

3.3. The map H near N0. The map H : (N0,∞) → (0, N0) defined in Theorem
3.1 will be a key ingredient for our main result on relaxation oscillations. Detailed
global properties of H seem to be not achievable. On the other hand, it is possible
to examine properties of H near N0 based on an approximation of W c(Z0) near
(S0, 0, N0), or simply, a center manifold W c(S0, 0, N0) of the equilibrium (S0, 0, N0).
Note that, the eigenvalues at (S0, 0, N0) are λ1 = λ3 = 0 > λ2 = −(d+ p). Thus, for
an equilibrium w ∈ Z0 near (S0, 0, N0), the corresponding eigenvalues satisfy λ1 > λ2

and λ3 > λ2. As a consequence, W c(S0, 0, N0) ⊂ M(Z0), and hence, is unique. It
should be pointed out that, in general, a center manifold may not be unique.

3.3.1. An approximation of the center manifold W c(S0, 0, N0). We look
for an approximation of the center manifold W c(S0, 0, N0) in the vicinity of (S0, 0, N0)
as the graph of a function

S =
d

d+ p
N + U(N, I)I =

d

d+ p
N + a0(N)I + a1(N, I)I2.

The form is justified by the fact that {I = 0} is invariant and W c(S0, 0, N0) ∩ {I =
0} ⊂ Z0.

Taking the derivative of S = d
d+pN + U(N, I)I with respect to t, we have

S′ =
d

d+ p
N ′ + a′0IN

′ + a1,NI2N ′ + a0I
′ + 2a1II

′ + a1,II
2I ′.
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From (3.1) we have

dN−h
( d

d+ p
N + a0(N)I + a1(N, I)I2, N

)
I

− (d+ p)
( d

d+ p
N + a0(N)I + a1(N, I)I2

)

=− α
( d

d+ p
+ a′0I + a1,NI2

)
I

+ (a0 + 2a1I + a1,II
2I ′)

(
h
( d

d+ p
N + a0(N)I + a1(N, I)I2, N

)
− a

)
I.

Expanding h at the point (bN/(b+ p), N) we get

dN−h
( d

d+ p
N,N

)
I − (d+ p)

( d

d+ p
N + a0(N)I

)
+O(I2)

=− αd

d+ p
I + a0

(
h
( d

d+ p
N,N

)
− a

)
I +O(I2).

Comparing coefficients of I0 and I1 we obtain

a0(N) =

αd
d+p − h

(
d

d+pN,N
)

d+ p+ h
(

d
d+pN,N

)
− a

.

Note that we restrict the approximation of W c(S0, 0, N0) near (S0, 0, N0). Thus, N is
close to N0, and hence, the denominator in the above expression is close to d+ p > 0.

Near equilibrium (S0, 0, N0), the center manifold W c(S0, 0, N0) is given as the
graph of the function

S =
d

d+ p
N + a0(N)I +O(I2)

=
d

d+ p
N +

αd
d+p − h

(
d

d+pN,N
)

d+ p+ h
(

d
d+pN,N

)
− a

I +O(I2).
(3.2)

On the center manifoldW c(S0, 0, N0) and near (S0, 0, N0), system (3.1) is reduced
to a 2-dimensional system

I ′ = h

(
dN

d+ p
+ a0(N)I +O(I2), N

)
I − aI,

N ′ = −αI.

(3.3)

3.3.2. Properties of the map H near N0.

Proposition 3.2. The map H satisfies H(N0) = N0, H ′(N0) = −1 and

H ′′(N0) = − 2

α
a0(N0)hS

(
S0, N0

)
.
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Proof. Set v(t) = N(t)−N0. In terms of (I, v), system (3.3) becomes

I ′ = h

(
S0 +

dv

d+ p
+ a0(N0 + v)I +O(I2), N0 + v

)
I − aI,

v′ = −αI.

Since {I = 0} is invariant and the map H is defined through the dynamics where
I > 0, we divide the two equations above to get

dI

dv
= − 1

α

(
h
(
S0 +

dv

d+ p
+ a0(N0 + v)I +O(I2), N0 + v

)
− a

)
.(3.4)

Expanding the right-hand side at v = 0 leads to

h
(
S0 +

dv

d+ p
+ a0(N0 + v)I +O(I2), N0 + v

)
− a

= hS ·
( dv

d+ p
+ (a0 + a′0v)I

)
+ hN · v + 1

2
hSS ·

( dv

d+ p
+ (a0 + a′0v)I

)2

+ hSN ·
( dv

d+ p
+ (a0 + a′0v)I

)
v +

1

2
hNN · v2 +O(I2, v2I, I3),

where the partial derivatives of h are all evaluated at (S0, N0), and a0 = a0(N0) and
a′0 = a′0(N0). Denote

L =
d

d+ p
hS + hN and Q =

d2

(d+ p)2
hSS +

2d

d+ p
hSN + hNN .(3.5)

Equation (3.4) becomes

dI

dv
= − 1

2α
(2Lv +Qv2)

− 1

α

(
hS +

( d

d+ p
hSS + hSN

)
v

)
(a0 + a′0v)I +O(I2, v2I, v3).

(3.6)

By the existence and smoothness of solutions and smooth dependence of solutions
on parameters, for v small, we look for solutions of the form I(v) = c0 + c1v+ c2v2 +
O(v3). Substituting I(v) into (3.6) and comparing terms of like powers in v we get

c1 =− 1

α
a0hSc0 +O(c20),

c2 =− 1

2α
L− 1

2α

(
a′0hS − 1

α
a20h

2
S +

d

d+ p
a0hSS + a0hSN

)
c0 +O(c20).

(3.7)

Thus, near v = 0, the solution of (3.6) is

I(v) =c0 −
a0hSv

α
c0 −

L

2α
v2 +O(c0v

2).(3.8)

To define H , we need the initial condition I(v) = 0 at v = N − N0 for N > N0

and N − N0 ≪ 1. We can then determine the value c0 corresponding to this initial
condition. From (3.8),

0 =c0 −
a0hS · (N −N0)

α
c0 −

L

2α
(N −N0)

2 +O(c0(N −N0)
2),



RELAXATION OSCILLATIONS IN EPIDEMIC MODELS 11

or equivalently,

c0

(
1− 1

α
a0hS · (N −N0) +O(N −N0)

2

)
=

L

2α
(N −N0)

2.

Thus,

c0 =
L

2α
(N −N0)

2 +
La0hS

2α2
(N −N0)

3 +O(N −N0)
4.(3.9)

The value of H(N) satisfies I(H(N)−N0) = 0. Note that

H(N)−N0 = H(N)−H(N0) = H ′(N0)(N−N0)+
1

2
H ′′(N0)(N−N0)

2+O(N−N0)
3.

It then follows from I(H(N)−N0) = 0, (3.7), (3.8) and (3.9) that

0 =
L

2α
(N −N0)

2 +
La0hS

2α2
(1−H ′(N0))(N −N0)

3

− L

2α

(
H ′(N0)(N −N0) +

1

2
H ′′(N0)(N −N0)

2

)2

+O(N −N0)
4.

Comparing (N−N0)2 terms gives thatH ′(N0) = −1 (due to also thatH is decreasing).
The (N −N0)3 terms then yield

La0hS

α2
+

L

2α
H ′′(N0) = 0.

This completes the proof.

3.4. A discussion and the link to the main result. In this section, we sum-
marize the results for system (3.1), discuss the impact of the sign changing eigenvalue
h(S,N)−a, and provide mathematical and biological motivations for our main result.

For N < N0, h(dN/(d+ p), N) − a < 0, and it implies that, for an initial state
(S(0), I(0), N(0)) near the region {I = 0, N < N0}, I(t) decreases and the solution
converges to an equilibrium in Z0 with N < N0. Biologically speaking, if the total
population N is below the critical community size N0, or equivalently, the number of
susceptibles S is below the critical size S0 = dN0/(d + p), then the population can
not sustain an epidemic and the disease dies out.

We describe the dynamics for solutions with initial conditions near the other
region {I = 0, N > N0} in three stages.

Stage I: For an initial state (S(0), I(0), N(0)) with N > N0, h(dN/(d+ p), N)−
a > 0 for small t > 0 and I(t) increases initially. In biological terms, if the population
size surpasses the critical community size N0, then any initial infection will lead to a
disease outbreak.

Stage II: As I(t) increases away from {I = 0}, the dynamics outside {I = 0}
become dominant; in particular, N(t) decreases. Once N(t) < N0 (or equivalently
S(t) < S0), we know that h(S,N)− a < 0 and I(t) begins to decrease.

Stage III: As time goes on, I(t) continues to decrease. Eventually the solution
will enter a vicinity of the region {I = 0, N < N0} and is attracted to an equilibrium
in Z0 with N < N0. The disease outbreak leads to an epidemic but the disease
eventually dies out.

We see that, when ε = 0, the model (3.1) only describes epidemics of the disease;
the disease eventually dies out. There is no mechanism for the recurrence of the
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disease if the population growth is zero. This is parallel to the classical SIR model
with no demography and disease caused death.

When ε > 0, solutions of system (2.3) with N(0) > N0 and I(0) small go through
Stages I and II as described above, but Stage III will no longer be the terminal stage.
In this case, the disease-free set {I = 0} remains invariant. The half line Z0 also
remains invariant but is no longer a set of equilibria. Instead, Z0 becomes an orbit
for which N increases with t with speed of order O(ε). For this reason, Z0 is called
the slow manifold for small ε > 0.

Stage IV: When ε > 0, for a solution in the vicinity of Z0 with N < N0 during
Stage III, it will follow an orbit on the slow manifold Z0 by the continuous dependence
on initial conditions. As N(t) increases beyond the critical community size N0 and the
solution enters the region {I = 0, N > N0}. As a consequence, I(t) begins to increase
and the solution repeats Stages I - III, leading to another epidemic. The period during
which the solution moves along the slow manifold is the inter-epidemic period. We
see that, when ε > 0, the fall of susceptible population during an epidemic and the
recovery of the susceptible population during the inter-epidemic period produces an
oscillating behavior.

In summary, for ε > 0 small, all orbits, except for solutions on {I = 0} and Eε of
system (2.3), will exhibit oscillating behaviours. Three key conditions are responsible
for the mechanism of oscillation:

(C0) the plane {I = 0} is invariant for ε ≥ 0,
(C1) the assumption on the natural growth g(N) of the total population in the

absence of disease, and
(C2) the sign changing assumption of the eigenvalue λ3 = h(S,N)− a.

In the language of singular perturbation theory, condition (C2) means that the point
(S0, 0, N0) at which h(S0, N0) − a = 0 is a turning point. This point marks the
level of N or S that separates the region of disease decline from that of disease rise.
The condition (C1) implies that, on Z0, with the population growth and increase
of susceptibles from newborns, all orbits move from region of disease decline where
N < N0 to region of disease rise where N > N0. Conditions (C0) - (C2) imply that
the turning point (S0, 0, N0) is associated with the delay of stability-loss ([7, 17, 18,
23, 24, 25]). We emphasize that, while condition (C0) holds true naturally for the
specific model we consider, it is, however, highly degenerate in general when turning
points are present. Without condition (C0), presence of turning points can make
{I = 0} non-normally hyperbolic ([9, 15]) and destroy the persistence of {I = 0} for
ε > 0. The impact of turning points for ε > 0 can be extremely difficult to investigate.

While the oscillating behaviors of the SIR model when ε > 0 as described above
are biologically intuitive and mathematically verifiable, they can be decayed oscilla-
tions. The important mathematical question with biological significance is whether
or not there exists a stable periodic oscillation. Our main result in next section char-
acterizes, for the existence of stable periodic solutions, abstract conditions in general
and verifiable sufficient conditions in particular. Those periodic oscillations, if exist,
will typically have a large period of order O(ε−1).

4. Global dynamics of (2.3) for ε > 0 small. Recall that the two-dimensional
invariant manifoldM(Z0) from Theorem 3.1 persists toMε for ε > 0 small. We use the
properties of Mε to establish an abstract result from geometric singular perturbations
with turning point, focusing on results on relaxation oscillations. Due to the lack of
explicit global representation of M(Z0), not all abstract results can be transformed
back to the concrete model (2.3) in the sense that the corresponding conditions are not



RELAXATION OSCILLATIONS IN EPIDEMIC MODELS 13

easy to verify. For some sufficient conditions on the existence of periodic oscillations,
we are able to transform the conditions back to the original model and they are
verifiable.

4.1. Formulation of a singularly perturbed problem. For δ > 0 small, let
M be the manifold consisting of all heteroclinic orbits from (S, 0, N) with N0 < N <
N∗+δ, together with the point (S0, 0, N0). Then, M persists in the sense as discussed
in Case 2 of Section 3.2 and proved in Appendix II. Let Mε be the perturbed manifold
of M for ε > 0 small; that is, Mε is invariant and Mε → M as ε → 0. Due to the
fact that {I = 0} is invariant for all ε and the set Z0 is normally hyperbolic within
{I = 0}, we have Z0 persists for ε > 0 small; that is, Zε = Mε ∩ {I = 0} persists as
a portion of the boundary of Mε.

Let φ(u, v; ε) for (u, v) ∈ R be a parameterization of the center manifold Mε,
where R is a bounded domain in {u ≥ 0, v ≥ 0} to be further characterized later on.
We require that,

(P1) for ε = 0, the heteroclinic orbits are determined by v = const so that decreas-
ing in u corresponds to increasing in time;

(P2) for ε ≥ 0, the set Zε corresponds to the curve {v = T (u)} for function
T : (0, U) → (0, V ) with T (U) = V where (U, V ) corresponds to the point
(S, 0, N∗ + δ) ∈ Z and hence {v = V } corresponds to the heteroclinic orbit
from (S, 0, N∗ + δ) ∈ Z0; Therefore,

R = {(u, v) : 0 < u < U, T (u) ≤ v < V };

(P3) for ε ≥ 0, the point (u, v) = (u0, T (u0)) corresponds to the point (S0, 0, N0),
(u, v) = (u0, T (u0)) corresponds to (S∗, 0, N∗).

v=T(u)

0
0u

v

u0 u

Fig. 2. Heteroclinic structure of (4.2) with ε = 0

In terms of (u, v) ∈ R, suppose that system (2.3) on the center manifold can be
put into the form

u′ = F (u, v; ε), v′ = G(u, v; ε).(4.1)

We now examine the properties that the vector field of system (4.1) must satisfy.
First of all, (P1) implies that G(u, v; 0) = 0, F (u, T (u); 0) = 0 and F (u, v; 0) < 0

for v > T (u). Thus, we can write G(u, v; ε) = εG1(u, v; ε), F (u, v; ε) = T (u) −
v + εF1(u, v; ε). The property (P2) implies that G1(u, T (u); ε) = TuF1(u, T (u); ε).
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System (4.1) can be rewritten as

u′ = T (u)− v + εF1(u, v; ε),

v′ = εTu(u)F1(u, T (u); ε) + ε(v − T (u))G2(u, v; ε).
(4.2)

System (4.2) is a singularly perturbed problem with ε as the singular parameter.
As usual, the time t is called the fast time, which is the physical time of our problem.
In terms of the slow time τ = εt, system (4.2) becomes

εu̇ = T (u)− v + εF1(u, v; ε),

v̇ = Tu(u)F1(u, T (u); ε) + (v − T (u))G2(u, v; ε).
(4.3)

where the overdot symbol indicates the derivative with respect to τ .
The slow manifold is

Z = {v = T (u)}.

On the slow manifold Z, the flow is given by

u′ = εF1(u, T (u); ε).

It has a global sink at u = u0.
We recall that the set Z is invariant under system (4.2) (or equivalently under

system (4.3)) for all ε ≥ 0. This property is so crucial in creating oscillations in
the system. In fact, one will see late that there is a turning point on Z and, due
to the invariance of Z for all ε, the turning point causes the delay of stability loss
([7, 17, 18, 23, 24, 25]). We believe that the delay of stability loss is one of the most
important mechanism for the oscillation structure in biological population systems.

To describe the delay of stability loss, we define a map P : (0, u0) → (u0, u0) via

(4.4)

∫ P (u)

u

Tu(ξ)

F1(ξ, T (ξ))
dξ = 0.

Also, for any v > min{T (u) : u ∈ (0,∞)}, let l(v) and r(v) be the two solutions of
v = T (u) for u with l(v) < r(v) and set v0 = T (u0).

Proposition 4.1 (Delay of stability loss). Fix δ > 0 small. For ε > 0 small, let
(u(τ ; ε), v(τ ; ε)) be the solution of system (4.3) with the initial condition (u(0), v(0))
where u(0) < u0 and v(0) = T (u(0))+δ. Let τ(ε) > 0 be the time such that v(τ(ε); ε) =
T (u(τ(ε))) + δ. Then, as ε → 0, r(v(τ(ε))) → P (l(v(0)).

Note that P (l(v0)) < u0, and hence, T (l(v0)) = v0 > T (P (l(v0))).

Theorem 4.2. For ε > 0 small, either the equilibrium (uε, T (uε)) is a global
attractor of R for system (4.2) or there is a stable periodic relaxation oscillation.
Furthermore,

(i) if there exists u1 ∈ (l(v0), u0) such that T (u1) < T (P (u1)) then, for ε > 0
small, system (4.2) has a stable periodic relaxation oscillation whose limiting
orbit, as ε → 0, is the union of the heteroclinic orbit from (P (uc), T (P (uc)))
to (uc, T (uc)) and the curve on {v = T (u)} from (uc, T (uc)) to (P (uc), T (P (uc)))
for some uc ∈ (l(v0), u1) satisfying T (uc) = T (P (uc));

(ii) if, for every u ∈ (l(v0), u0), T (u) > T (P (u)), then, for ε > 0 small, the
equilibrium (uε, T (uε)) is a global attractor of R for system (4.2).
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Proof. To prove the statement (i), note that the unstable manifold Wu(u0, v0)
will approach the left branch of the slow manifold {v = T (u)} almost horizontally
near the set {v = v0} toward the point (l(v0), v0) and then follow the slow orbit
through (l(v0), v0) up to near the point (P (l(v0)), T (P (l(v0))) and leave the slow
manifold almost horizontally near the set {v = T (P (l(v0)))}. Due to the fact that
T (l(v0)) = v0 > T (P (l(v0))), upon leaving the slow manifold at near the point
(P (l(v0)), T (P (l(v0)))), the unstable manifold Wu(u0, v0) stays below its initial por-
tion. Therefore, the unstable manifold spirals inward. By the same argument, the
existence of u1 with the property T (u1) < T (P (u1)) implies that the forward orbit
starting from (u1+δ, T (u1)) for some δ > 0 small spirals outward. This orbit together
with the unstable manifold Wu(u0, v0) encloses a positively invariant region. By the
Poincaré-BendixonTheorem, there is a stable periodic orbit. The above argument also
shows that between any numbers û1, û2 ∈ (l(v0), u0) with û2 < û1, T (û1) < T (P (û1))
and T (û2) > T (P (û2)), there is a periodic orbit strictly enclosed by the two orbits
through respectively the points (û1 + δ, T (û1)) and (û2 + δ, T (û2)) for some small
δ. Therefore, the limiting position of a periodic orbit is exactly as described in the
statement.

The proof for the statement (ii) follows from the above argument and we will
omit the details here.

4.2. Statement of the main results for system (2.3). To translate Theo-
rem 4.2 in terms of the original system (2.3), we recall that H : (N0,∞) → (0, N0)
is the function defined as: for ε = 0 and for (dN/(d + p), 0, N) ∈ Z0 with N > N0,
(dH(N)/(d + p), 0, H(N)) ∈ Z0 is the unique equilibrium so that there is a hetero-
clinic orbit from (dN/(d+ p), 0, N) to (dH(N)/(d+ p), 0, H(N)). The map P defined
in (4.4) is given by P : (0, N0) → (N0,∞) by

∫ P (N)

N

h(dξ/(d+ p), ξ)− a

g(ξ)
dξ = 0.(4.5)

Theorem 4.3. Let H(N) and P (N) be defined as above. For ε > 0 small, either
the endemic equilibrium (Sε, Iε, Nε) is a global attractor or there is a stable periodic
relaxation oscillation. More precisely,

(i) if there exists N1 ∈ (H(N∗), N0) such that N1 > H(P (N1)) then, for ε > 0
small, system (2.3) has a stable periodic relaxation oscillation whose limit-
ing orbit, as ε → 0, is the union of the heteroclinic orbit from the point
(dP (N c)/(d + p), 0, P (N c)) to the point (dN c/(d + p), 0, N c) and the seg-
ment on Z0 from the point (dN c/(d + p), 0, N c) to the point (dP (N c)/(d +
p), 0, P (N c)) for some N c ∈ (H(N∗), N1) satisfying N c = H(P (N c));

(ii) if, for every N ∈ (H(N∗), N0), N < H(P (N)), then, for ε > 0 small, the
endemic equilibrium (Sε, Iε, Nε) is a global attractor for system (2.3).

Proof. It suffices to show that, for ε > 0, Mε attracts all solutions except the
equilibria (0, 0, 0) and (S∗, 0, N∗). Since Mε has a region attracting orbits on Mε and
Mε is normally stable, there is neighbourhood U of Mε independent of ε such that,
for ε > 0 small enough, any solution entering U is attracted by the attracting region
on Mε. Therefore, we only need to show that any solution will enter U .

First of all, we see that N ′(t) < 0 if N(t) > N∗. Thus, all solutions are attracted
by the domain D and the domain D is positively invariant. It can be verified that Mε

attracts all solution on {I = 0} except (0, 0, 0) and (S∗, 0, N∗). Now, for a solution
(S(t), I(t), N(t)) with the initial condition (S(0), I(0), N(0)) ∈ D and I(0) > 0, by
continuity, for ε > 0 small independent of the solution starting in D, the solution will
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approach a point (S̄, 0, N̄) ∈ Z0 with N̄ ≤ N0 and then follow the slow orbit through
(S̄, 0, N̄) ∈ Z0. Therefore, it enters a neighbourhood of (S0, 0, N0) and hence into U .

4.3. Concrete conditions for the existence of relaxation oscillations of
system (2.3).

Proposition 4.4. The map P satisfies P (N0) = N0, P ′(N0) = −1, and

P ′′(N0) =
4g′(N0)L− 2g(N0)Q

3g(N0)L
,

where L and Q are defined in (3.5).
Proof. It follows from the definition of P that P (N0) = N0. Differentiating with

respect to N on (4.5) we get

h(dP (N)/(d+ p), P (N))− a

g(P (N))
P ′(N) =

h(dN/(d+ p), N)− a

g(N)
.(4.6)

Note that

P (N) =P (N0) + P ′(N0)(N −N0) +
1

2
P ′′(N0)(N −N0)

2 +O(N −N0)
3

=N0 + P ′(N0)(N −N0) +
1

2
P ′′(N0)(N −N0)

2 +O(N −N0)
3,

P ′(N) =P ′(N0) + P ′′(N0)(N −N0) +O(N −N0)
2,

g(N) =g(N0) + g′(N0)(N −N0) +
1

2
g′′(N0)(N −N0)

2 +O(N −N0)
3,

g(P (N)) =g(N0) + g′(N0)(P (N)−N0) +
1

2
g′′(N0)(P (N)−N0)

2,

=g(N0) + g′(N0)

(
P ′(N0)(N −N0) +

1

2
P ′′(N0)(N −N0)

2

)

+
1

2
g′′(N0)(P

′(N0))
2(N −N0)

2 +O(N −N0)
3,

and

h(dN/(d+ p), N)− a =L(N −N0) +
1

2
Q(N −N0)

2 +O(N −N0)
3,

h(dP (N)/(d+ p), P (N))− a =L(P (N)−N0) +
1

2
Q(P (N)−N0)

2 +O(N −N0)
3

=L

(
P ′(N0)(N −N0) +

1

2
P ′′(N0)(N −N0)

2

)

+
1

2
Q(P ′(N0))

2(N −N0)
2 +O(N −N0)

3.

Substituting these expansions into (4.6) and comparing the terms of like-powers in
(N −N0) we get

for N −N0 : gL(P ′)2 = gL =⇒ P ′ = −1,

for (N −N0)
2 : − 1

2
g(LP ′′ +Q) + g′L− gLP ′′ = −g′L+

1

2
gQ

=⇒ P ′′ =
4g′L− 2gQ

3gL
.
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This completes the proof.
Combining Propositions 3.2 and 4.4 we obtain the following result.
Proposition 4.5. The function F̄ = H ◦ P satisfies F̄ (N0) = N0, F̄ ′(N0) = 1,

and

F̄ ′′(N0) = H ′′(N0)− P ′′(N0) =
2∆0

(d+ p)g(N0)
+

2

3

g′(N0)L+ g(N0)Q

g(N0)L
,

where ∆0 is defined in (2.4), and L and Q are defined in (3.5).
As a direct consequence of Theorem 4.3 and Proposition 4.5, we have
Corollary 4.6. If F̄ ′′(N0) < 0, then, for ε > 0 small, there is at least one

stable relaxation oscillation.
Example. We establish the existence of a stable relaxation oscillation in the case

that Eε is stable. More precisely, we take a special case of h that is biologically
plausible and show that, for any g satisfying (A1), there are parameter ranges for
β and K, dependent on all other fixed parameters so that ∆0 > 0 in Theorem 2.4,
for which the equilibrium Eε is stable and F̄ ′′(N0) < 0 holds. This guarantees the
existence of a stable relaxation oscillation. Thus, a stable relaxation oscillation may
exist even the equilibrium Eε is stable. In this case, there exists at least an unstable
periodic orbit between the stable relaxation and the equilibrium. In general, the
unstable periodic orbit is not necessarily a relaxation oscillation but a small periodic
orbit through a sub-critical Hopf bifurcation.

Consider h(S,N) = βS
K+S with β > a, it can be verified that

S0 =
aK

β − a
> 0, N0 =

d+ p

d

aK

β − a
,

L =
d

d+ p

βK

(K + S0)2
, Q = − d2

(d+ p)2
2βK

(K + S0)3
,

∆0 =
( a

α
− d

d+ p

) βK

(K + S0)2
g(N0)− (d+ p)gN (N0),

F̄ ′′(N0) =
2∆0

(d+ p)g(N0)
+

2

3

g′(N0)L + g(N0)Q

g(N0)L

=
2

(d+ p)g(N0)

(( a

α
− d

d+ p

) βK

(K + S0)2
g(N0)

−2

3
(d+ p)gN (N0)−

2d

3

K + S0

(K + S0)2
g(N0)

)
.

We also note that,
( a

α
− d

d+ p

) βK

(K + S0)2
− 2d

3

K + S0

(K + S0)2
=

( a

α
− d

d+ p
− 2d

3(β − a)

) βK

(K + S0)2
.

Choose β∗ > a such that

a

α
− d

d+ p
− 2d

3(β∗ − a)
< 0,

and choose K∗ such that, for N0 = N∗
0 = d+p

d
aK∗

β∗−a , gN (N∗
0 ) = 0 holds. Then

∆0 =
( a

α
− d

d+ p

) β∗K∗

(K∗ + S0)2
g(N0) > 0,

F̄ ′′(N∗
0 ) =

2

d+ p

( a

α
− d

d+ p
− 2d

3(β − a)

) βK∗

(K∗ + S0)2
< 0.
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This accomplishes the goal of this example.
We note that the construction of the above example strongly indicates that it

may not be rare to have stable relaxation oscillations when the endemic equilibrium
Eε is stable. It is also possible to give a more detailed analysis, for fixed forms of
h and g, on the parameter ranges for such co-existence of stable structures. It may
reveal a more comprehensive understanding of the global dynamics of this model.

5. Numerical simulations and biological interpretations. In this section,
we provide results from numerical simulations of model (2.3) that demonstrate and
support our theoretical results on the existence of stable periodic solutions of relax-
ation oscillation type. Unless otherwise stated, we choose

g(N) = N
(
1− N

N∗

)
and h(S,N) =

βS

K + S
.

It can be verified that g(N) and h(S,N) satisfy assumptions (A1), (A2) and (A3).

5.1. Existence of relaxation oscillations.

Case 1. Existence of relaxation oscillation when Eε is unstable.

Choose d = 0.2, p = 0.01, α = 0.048, β = 1, γ = 0.75, K = 0.1, N∗ = 400
and ε = 10−4. The endemic equilibrium Eε = (49.9, 0.09555, 52.84889) is unstable.
In Figure 3, we show that a trajectory starting from (35, 0.09555, 67) approaches a
stable relaxation oscillation cycle with inter-epidemic period 5.6× 104.

Case 2. Existence of relaxation oscillation when Eε is stable.

Choose d = 0.2, p = 0.01, α = 0.049, β = 1, γ = 0.75, K = 0.1, ε = 10−4, and
N∗ = 380. In Figure 4, we show that a trajectory starting from (197, 1.47, 204.4)
approaches a stable relaxation oscillation cycle. We modified the function h(S,N)
in a small neighbourhood of Eε so that becomes locally asymptotically stable. Such
modification does not change the relaxation oscillation cycle since it is far away from
Eε. A trajectory starting from (150, 1, 160) is shown in Figure 4 to approach the
stable equilibrium Eε. We note that there should be a second periodic orbit that is
unstable (not shown in Figure 4).

5.2. Dependence of inter-epidemic period (IEP) on physical parame-
ters.

1. Dependence of IEP on the intrinsic growth rate ε.

We demonstrate using numerical evidence that the inter-epidemic period is of
order 1/ε. We choose d = 0.2, p = 0.01, α = 0.048, β = 1, γ = 0.75, K = 0.1
and N∗ = 400, and we vary the values of ε in the interval [10−5, 10−4]. For the
simulations, we assume that the disease is in the inter-epidemic period if the number
of the infected individuals is less than 10−7. The plot of IEP against the values of ε
and 1/ε are shown in Figure 5.

2. Dependence of IEP on parameters α and β.

In Figure 6, we show that the IEP decreases as the transmission coefficient β in
creases, and the IEP increases as the rate α of disease-caused death increases. For the
simulations, we choose d = 0.2, p = 0.01, γ = 0.75, K = 0.1, N∗ = 400 and ε = 10−4,
and vary values of β when α = 0.048 in Figure 6 (a), or vary the values of α when
β = 1 in Figure 6 (b).
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Fig. 3. An orbit converging to a stable relaxation oscillation cycle when Eε is unstable.

Appendix I: Technical proofs.

Proof of Theorem 2.4. To show (i), note that the linearization of system (2.3)
at (0, 0, 0) is

J(0, 0, 0) =

⎛

⎝
−(d+ p) 0 d+ εgN (0)

0 −a 0
0 −α εgN(0)

⎞

⎠ ,

whose eigenvalues are −(d + p) < 0, −a < 0, εgN (0) > 0, where εgN(0) > 0 follows
from (A1). Similarly, the linearization at (S∗, 0, N∗) is

J(S∗, 0, N∗) =

⎛

⎝
−(d+ p) −h d+ εgN(N∗)

0 h− a 0
0 −α εgN(N∗)

⎞

⎠ ,

with eigenvalues−(d+p) < 0, h(S∗, N∗)−a > 0, and εgN (N∗) < 0, where h(S∗, N∗)−
a > 0 follows from (A3) and εgN(N∗) < 0 follows from (A1).

The linearization at Eε is

J = J(Sε, Iε, Nε) =

⎛

⎝
−(d+ p+ hSIε) −a d− hNIε + εgN

hSIε 0 hNIε
0 −α εgN

⎞

⎠ ,
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Fig. 4. Numerical simulations show the existence of a stable periodic solution when the endemic
equilibrium is stable. An oscillatory orbit with a large amplitude is shown to converge to a stable
relaxation oscillation cycle, and an orbit with a smaller amplitude converges to the stable endemic
equilibrium Eε.
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Fig. 5. The inter-epidemic period (IEP) increases as the intrinsic growth rate ε decreases in
(a), and the IEP is in proportion to 1/ε in (b).

whose characteristic polynomial is given by

Pε(λ) = λ3 + (d+ p+
εhSg

α
− εgN )λ2 − ε((d+ p)gN − ahSg

α
− hNg − hSgNIε)λ

+ αdhSIε + α(d + p)hNIε − ε(a+ α)hSgNIε.



RELAXATION OSCILLATIONS IN EPIDEMIC MODELS 21

1 1.001 1.002 1.003 1.004 1.005
1

2

3

4

5

6

7

8 x 104

β

IE
P

(a) Dependence of IEP on β

0.043 0.044 0.045 0.046 0.047 0.048
0

1

2

3

4

5

6

7

8 x 104

α

IE
P

(b) Dependence of IEP on α

Fig. 6. Dependence of inter-epidemic period (IEP) on the transmission coefficient β and on
the rate of disease-caused death α.

Hence,
(5.1)

tr(J) =− (d+ p)− εhSg

α
+ εgN < 0,

det(J) =− αdhSIε − α(d + p)hNIε + ε(a+ α)hSgNIε

=− ε(d+ p)[
d

d+ p
hS(S0, N0) + hN (S0, N0)]g(N0) +O(ε2) < 0,

tr(J)a2 − det(A) =− ε((d+ p)gN − ahSg

α
− hNg − hSgNIε)

=− ε(d+ p)∆0 +O(ε2),

where a2 is the the coefficient of λ in Pε(λ), namely, the sum of all 2 × 2 principal
minors of J .

When ε = 0, P0(λ) = λ3 + (d+ p)λ2. It has a negative root, −(d+ p). Therefore,
when ε > 0 small, Pε(λ) has a negative root. We show that the remaining roots of
Pε(λ) are always complex conjugates. To see this, write Pε(λ) as

Pε(λ) = λ3 − a1λ
2 + a2λ− a3,

where a1 = tr(A) < 0, a3 = det(A) < 0, and a2 is as above. The larger of the two
critical points of Pε(λ) is

λ1 =
1

3

(
a1 +

√
a21 − 3a2

)
.

Straightforward calculation leads to

Pε(λ1) =
1

27

[
− 2a31 + 9a1a2 − 27a3 − 2(a21 − 3a2)

√
a21 − 3a2

]
.

It can be verified that Pε(λ1) > 0 if and only if

(5.2) 27a23 + 4a31a3 + 4a32 − 18a1a2a3 − a21a
2
2 > 0.
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When ε = 0, we have λ1 = 0, which is a double root of P0(λ). Therefore, Pε(λ1) = 0
when ε = 0, and thus the sign of the expression in (5.2) is determined by the ε order
terms, which is given by

4(d+ p)4g(N0)[
d

d+ p
hS(S0, N0) + hN (S0, N0)]ε > 0,

by assumption (A3) and continuity. Hence Pε(λ1) > 0. This implies that Pε(λ)
has only one real root. The signs of the real parts of the complex roots can be
determined by the Routh-Hurwitz conditions, which state that all roots of Pε(λ) have
negative real parts if and only if the following three conditions hold: a1 = tr(A) < 0,
a3 = det(A) < 0 and a1a2 − a3 < 0. From relations in (5.1), we see that, for ε > 0
small, if ∆0 > 0, then all three eigenvalues have negative real parts, and if ∆0 < 0,
then at least one eigenvalue has positive real parts. This establishes (ii).

Proof of Theorem 3.1. To show (i), we note that, for solution (S(t), I(t), N(t))
with initial condition (S, 0, N) ∈ D, I(t) ≡ 0, N(t) ≡ N and S(t) → dN/(d+p) as t →
∞. Thus, (S(t), I(t), N(t)) → (dN/(d+ p), 0, N) as t → ∞. Now let (S(t), I(t), N(t))
be the solution with the initial condition (S(0), I(0), N(0)) ∈ D with I(0) > 0. From
system (3.1), we have I(t) > 0 for all t ≥ 0 and hence N(t) monotonically decreases.
Therefore N(t) → N̄ as t → ∞ for some N̄ dependent on the initial condition. We
claim that N̄ ≤ N0.

First of all, note that the equilibrium (S0, 0, N0) has two zero eigenvalues and
one negative eigenvalue −(d+ p). Locally, there is a two dimensional center manifold
W c(S0, 0, N0), and W c(S0, 0, N0) can be taken to consist of heteroclinic orbits from
(S, 0, N) ∈ Z0 ∩ W c(S0, 0, N0) with S0 < S < S0 + δ0, for some δ0 > 0 small,
to a point (S̄, 0, N̄) ∈ Z0 ∩ W c(S0, 0, N0) and there is a neighbourhood N (δ0) of
(S0, 0, N0) inD such that any solution entering inN (δ0) approaches a point (S, 0, N) ∈
Z0 ∩W c(S0, 0, N0) with N < N0. Note that {I = 0} is invariant and, on {I = 0},
any solution (S(t), 0, N(t)) is given by N(t) = N(0) and S(t) → dN(0)/(d + p) with
the rate exp{−(d + p)t}. By continuity, for δ1 > 0 smaller than δ0, any solution
(S(t), I(t), N(t)) with 0 < I(0) ≤ δ1 and N0 − δ1 ≤ N(0) ≤ N0 + δ1 will follow the
solution with the initial condition (S(0), 0, N(0)) to the neighbourhood N(δ0) and
hence approach a point (S, 0, N) ∈ Z0 ∩W c(S0, 0, N0) with N < N0.

To establish the claim, we suppose on the contrary that N̄ > N0. Then, N̄ >
N0 + δ1 from the above argument. For δ > 0 small there exists t0 > 0 such that
N̄ ≤ N(t) < N̄ + δ for t ≥ t0. Since h(dN̄/(d+ p), N̄)− a > 0, there exist ρ > 0 small
and T > 0 such that any solution that crosses the square {(S, ρ, N) : |S−dN̄/(d+p)| <
ρ, |N − N̄ | < ρ} from below will stay above {I = ρ} for a length of time greater than
T . Now choose δ > 0 such that αρT > δ. It is clear that there is an infinite sequence
tn → ∞ such that I(tn) → 0. Thus, for some tn > t0, the forward orbit will cross the
above square at some time t∗. We have I(t) ≥ ρ for t ∈ [t∗, t∗ + T ], and hence

N(t∗ + T ) = N(t∗)− α

∫ t∗+T

t∗
I(s) ds ≤ N̄ + δ − αρT < N̄.

This contradicts to that N̄ ≤ N(t) for t ≥ 0 which establishes the claim.
We now show that (S(t), I(t), N(t)) → (dN̄/(d + p), 0, N̄) as t → ∞. From the

existence of the sequence tn → ∞ such that I(tn) → 0, we know (I(tn), N(tn)) →
(0, N̄) as n → ∞. By continuity, for n large, the solution will follow the solution
through the point (S(tn), 0, N(tn)) to a neighbourhood of the point (dN̄/(d+p), 0, N̄).



RELAXATION OSCILLATIONS IN EPIDEMIC MODELS 23

Since the set Z0 is normally stable near this point, the solution will approach some
point on Z0 and it must be (dN̄/(d+ p), 0, N̄) because N(t) → N̄ as t → ∞.

To establish the statement (ii), we note that the unstable manifold of a point
(S, 0, N) ∈ Z0 with N > N0 is 1-dimensional and an orbit representing the unstable
manifold with positive I-component, and hence, it converges to a point (S̄, 0, N̄) with
N̄ < N0 from statement (i). We now justify the properties of the function H in
the statement. For N1 > N2 > N0 with N1 and N2 close to N0, it is clear that
H(N1) < H(N2) since the corresponding heteroclinic orbits lie on the local center
manifold W c(S0, 0, N0) which is a disk-like. It is also clear that H is a continuous
and one-to-one function. Therefore, the monotone decreasing property of H holds
globally and H(N) → N∞ as N → ∞ exists. It remains to show that N∞ > 0.
It can be verified directly that the eigenvectors associated to the stable eigenvalues
λ2 = −(d+ p) and λ3 = h(0, 0)− a = −a of (0, 0, 0) are, respectively,

v2 = (1, 0, 0) and v3 =

(
αd

a(d+ p− a)
, 1,

α

a

)
.

Since α < a, the vectors v2 and v3 at (0, 0, 0) are pointing towards the exterior of the
feasible region D. Therefore, the local two dimensional stable manifold W s

loc(0, 0, 0)
except (0, 0, 0) stays outside of D. By continuity, for some δ > 0 small and for any
equilibrium (dN/(d + p), 0, N) with N < δ, an orbit starting on the local stable
manifold W s

loc(dN/(d + p), 0, N) except the equilibrium (dN/(d + p), 0, N) will exit
the region D backward, and will stay outside D in backward time upon the exit due
to the positive invariance of D. Hence, H(N) ≥ δ for any N > N0, which implies
that N∞ ≥ δ > 0.

Appendix II: Persistence of M(Z0) for ε > 0 small. To establish the persis-
tence of M(Z0) claimed in Case 2 of Section 3.2, we make a change of variables. This
change of variables is continuous but not everywhere smooth. Indeed, it is smooth
everywhere except on {I = 0}. Nevertheless, the property that {I = 0} is invariant
for all ε ≥ 0 makes the change of variables work.

Let m be a positive integer so that a < m(d + p). We may assume that m ≥ 2.
Make the change of state variables: S = x, I = ym and N = N , for y > 0. In terms
of the new variables (x, y,N), the equation for I in (2.3) becomes

mym−1y′ = (h(x,N)− a)ym, or equivalently, y′ =
1

m
(h(x,N) − a)y.

The model (2.3) becomes

x′ = dN + εg(N)− h(x,N)ym − dx− px,

y′ =
1

m
(h(x,N)− a)y,

N ′ = εg(N)− αym.

(5.1)

We note that this change of state variables is smooth for y > 0 and can be
continued to y = 0. The new system (5.1) has exactly the same reduced dynamics on
{y = 0} as that of (2.3) on {I = 0}. We emphasize that, the naturally given property
that {I = 0} is invariant under (2.3) for ε ≥ 0 is crucial for such a change of variables.
The biological implication are commented and illustrated by examples in Section 5.

Recall that m ≥ 2. The set Z0 corresponds, for (5.1), to

S0 =

{
y = 0, x =

d

d+ p
N

}
.
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Let M(S0) denote the corresponding invariant manifold M(Z0).
The linearization at each equilibrium on S0 is

⎛

⎝
−(d+ p) 0 d

0 1
m (h− a) 0

0 0 0

⎞

⎠

with eigenvalues λ1 = 0, λ2 = −(d + p), and λ3 = (h(dN/(d+ p), N) − a)/m. The
eigenvector v1 associated with λ1 is tangent to S0 and that v2 associated with λ2 is
(1, 0, 0), and v1 and v2 span the plane {y = 0}. The eigenvector v3 associated with
λ3 is transversal to the plane {y = 0}. While the eigenvalue λ2 stays negative, the
eigenvalue λ3 changes sign across (S0, 0, N0) ∈ S0. Nevertheless, λ1 > λ2 and λ3 > λ2.
The center manifold theory in [5, 6] implies that M(S0) persists under system (5.1)
for ε > 0 small.
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