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Abstract

Permanent charge is the major structural quantity of an ion channel. It
defines the ion channel and its interaction with boundary conditions plays the
predominate role for ionic flow properties or functions of the ion channel. In
this work, we investigate effects of large magnitude permanent charges of a sim-
ple form on the ionic flow of a 1:1 solution (an ionic mixture with one positive
charged ion species and one negatively charged ion species). The analysis is
based on a quasi-one-dimensional classical Poisson-Nernst-Planck model. Our
findings include, (i) large permanent charges produce flux and current satura-
tions at large transmembrane electric potentials; (ii) large permanent charges
inhibit the flux of co-ions (ions with the same charge sign) but could either
enhance or reduce the flux of counter-ion (ions with opposite charge signs), de-
pending on boundary conditions and the channel geometry; (iii) the magnitude
of the co-ion flux decreases with increases in magnitude of the large permanent
charge but the counter-ion flux could either decease or increase in large perma-
nent charge, depending on boundary conditions and the channel geometry, and
quite significantly, (iv) large permanent charges are responsible for the counter-
intuitive declining phenomenon – an increase in the electrochemical potential
of counter-ion species in a particular manner leads to decreasing of counter-ion
flux. Our work should be viewed as the first step of future analyses/numerics
with more structural detail and more correlations between ions included. The
basic findings in this work should provide a guidance for further investigation.
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1 Introduction

Ion channels provide pathways for transport of ions between inside and outside of cells
that produce electric signals for cells to communicate with each other and to conduct
biological functions of living organisms ([6, 7, 10, 11, 12, 13, 14]). Ion channels are
defined by their main structural characteristics: the permanent charge distributions
and channel shapes. They can be conveniently viewed as nano-devices ([4, 35]) and the
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ultimate interest is functions of ion channels ([3, 15, 16, 31, 33, 36, 37]). Permanent
charge is the major structural quantity and plays the predominate role for functions
of an ion channel. In addition to the permanent charge, other important physical
parameters/quantities such as (transmembrane) electrical potential and boundary
concentrations of ionic mixtures are crucial for ionic flow properties. Those boundary
conditions interact nonlinearly with channel structures and together they produce
rich properties that an ion channel could have. Due to the multi-scale feature and
multiple parameters involved in ionic flow, a suitable mathematical analysis with a
physically sound model plays critical and unique roles for a possible comprehensive
understanding of ion channel problems.

Poisson-Nernst-Planck (PNP) systems serve as basic primitive models for ionic
motion through ion channels. The inhered nature of multi-scale with multiple phys-
ical parameters of ion channel problems in PNP models presents a great challenge
for a mathematical analysis toward concrete properties that are relevant and central
to biological concerns. The present experimental techniques allow measurements of
mainly the I-V relation – far away from measurements of internal dynamics of ionic
flows. Not knowing what is going on in any detail adds another level of difficulty for
an understanding of ion channel properties. Generally speaking, the best hope is to
first understand key features and robust phenomena of ion channel problems for a cer-
tain extremal parameter values in simple biological setups. From a body of extensive
researches, two parameters are arguably among the most important ones for proper-
ties of ionic flows: one is the dimensionless parameter ε as the ratio of Debye length
over a characteristic length (e.g., the distance between two applied electrodes, or the
channel length) of the problem, and the other is, of course, the permanent charge
Q (scaled by a characteristic concentration) that includes its density and its spatial
distribution. The parameter ε could vary in several orders of magnitudes depending
on the setup of electrochemical problems; for ion channel problems, it is typically
small, for example, it could be of order 10−3 or smaller. With the assumption that ε
is small, a geometric singular perturbation framework was developed specifically for
an analysis of classical Poisson-Nernst-Planck (cPNP) models for ion channel prob-
lems in [8, 24, 25, 28]. The specifics lie in the two critical structures of the PNP
system that allows one to reduce the boundary value problem of the PNP model to
an algebraic system – the governing system ([25]). The upshot of the governing sys-
tem is two folds: it includes more or less all relevant physical parameters and, once a
solution of the governing system is obtained, the singular orbit (the zeroth order in
ε approximation solution of the boundary value problem) can be readily determined.
The framework was extended to PNP with hard-sphere potentials to account for ion
size effects to some extents in [18, 22, 27, 34] and a number of important applications
on ionic flow has been obtained in [1, 2, 5, 17, 19, 38].

One can examine approximated solutions, extract information about interplays
among multiple physical quantities, and even discover new phenomena. For exam-
ple, in [19], based on the governing system obtained in [8] for a mixture of a cation
(positively charged ion) and an anion (negatively charged ion), effects of small (rela-
tive to boundary concentrations) permanent charges were systematically investigated.
In particular, it was shown that (Theorem 4.8 in [19]), depending on the boundary
conditions, a small positive permanent charge can
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(i) enhance the flux of anion and reduce that of cation,

(ii) enhance the fluxes of both cation and anion,

(iii) reduce the fluxes of both cation and anion,

(iv) but cannot enhance the flux of cation while reducing that of anion.

Furthermore, it was shown that, to optimize the effect of (small) permanent
charge, the channel neck within which the permanent charge distributes, should be
“short” and “narrow” (Proposition 4.11 and Remark 4.12 in [19]).

Inspired by the above possibilities of (small) permanent charge effects, a flux ratio
was introduced in [29] and was shown to have a universal property that is a common
feature of all the above specifics (i)—(iv).

In this work, we examine effects of large permanent charges on ionic flow. Our
study is based on the aforementioned geometric singular perturbation analysis for
cPNP. This setup would raise a concern about the feasibility. Indeed, cPNP is known
to be reliable when the ionic mixture is dilute but, with a large permanent charge,
the ionic mixture would be crowded. On the other hand, the setup is reasonable
for semi-conductor problems and for synthetic channels. More relevantly, the study
in this paper is the first step for analysis of realistic models with large permanent
charge. There are serious reasons and merits for us to take the simple model in this
paper. It allows us to get more explicit expressions of the ionic fluxes in terms of the
physical parameters of the problem so we are able to extract concrete information
on large permanent charge effects. Furthermore, the analysis in this simpler setting
provides important insights for the analysis of more realistic models.

We take the permanent charges in a special form: Q(x) = 0 for x 6∈ [a, b] and
Q(x) = 2Q0 for x ∈ [a, b] and assume |Q0| is large. We are able to derive expansions
of fluxes in ν = 1/|Q0| � 1 and to extract/analyze effects of large permanent charge
on fluxes. Among others, large permanent charges are shown to play a role for sat-
urations of flux and current in large transmembrane electric potential; large positive
permanent charges inhibit the flux of cation relative to the flux with no permanent
charge but could either enhance or reduce the flux of anion, depending on boundary
conditions and channel geometry; the magnitude of the cation flux is decreasing in
large permanent charge but the anion flux could either decease or increase in large
permanent charge, depending on boundary conditions and channel geometry. More
interesting is a mechanism for the declining curve phenomenon: As transmembrane
electrochemical potential increases, in a particular way, the flux decreases (without
a lower bound). One mechanism for this counterintuitive phenomenon is that the
permanent charge is Large.

The rest of the paper is organized as follows. In Section 2, we recall the quasi-
one-dimensional PNP model taken in this study, the key assumptions in terms of the
dimensionless version of the model, and a previous result from [8] that the analysis
of this paper will be based on. Our main analysis for approximations of fluxes in
large Q is conducted in Section 3. Section 4 is devoted to several biological inter-
pretations/consequences based on the approximations of fluxes. Section 5 contains a
conclusion remark. Two appendixes are provided. Appendix A (Section 6) contains
an analysis for a degenerate case of the problem and Appendix B (Section 7) is a
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rigorous justification for the existence of a solution for small ε > 0 as an application
of the Exchange Lemma to the singular orbit.

2 Basic setup and relevant results

2.1 A quasi-one-dimensional PNP model

Our analysis of large permanent charge effects on ionic flows is based on a quasi-
one-dimensional PNP model first proposed in [30] and, for a special case, rigorously
justified in [26]. For a mixture of n ion species, the model is

1

A(X)

d

dX

(
εr(X)ε0A(X)

dΦ

dX

)
= −e0

( n∑
s=1

zsCs +Q(X)
)
,

dJk
dX

= 0, −Jk =
1

kBT
Dk(X)A(X)Ck

dµk
dX

, k = 1, 2, · · · , n
(2.1)

where X ∈ [a0, b0] is the coordinate along the axis of the channel and baths of total
length b0 − a0, A(X) is the cross-section area of the channel over the longitudinal
location X, e0 is the elementary charge (we reserve the letter e for the Euler’s number
– the base for the natural exponential function), ε0 is the vacuum permittivity, εr(X)
is the relative dielectric coefficient, Q(X) is the permanent charge density, kB is the
Boltzmann constant, T is the absolute temperature, Φ is the electrical potential,
and, for the kth ion species, Ck is the concentration, zk is the valence, Dk(X) is the
diffusion coefficient, µk is the electrochemical potential and Jk is the flux density.

We will take the following boundary conditions, for k = 1, 2, · · · , n,

Φ(a0) = V, Ck(a0) = Lk > 0; Φ(b0) = 0, Ck(b0) = Rk > 0. (2.2)

The boundary conditions are directly related to typical experimental designs with
two electrodes that are applied to control or drive the ionic flow. The positions X = a0
and X = b0 represent the locations of the two electrodes inside the baths separated
by the channel. One would hope to have the electroneutral boundary conditions

n∑
s=1

zsLs = 0 =
n∑
s=1

zsRs.

This is because, otherwise, there will be sharp boundary layers that could cause non-
trivial uncertainties in experimental measurements (see [38] for more discussions).

For the kth ion species, the electrochemical potential µk(X) consists of the ideal
component µidk and the excess component µexk where the ideal component

µidk (X) = zke0Φ(X) + kBT ln
Ck(X)

C0

is the point-charge contribution where C0 is a characteristic concentration, and µexk (x)
accounts for ion size effects. As explained above, although not totally physical for ion
channel problems in general, we will consider only the ideal component in this work
as a starting point and hope some of the features revealed for this case can be treated
as a guidance for further studies of more accurate models with excess component.
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The permanent charge Q(X) is a mathematical model for ion channel (protein)
structure that will be assumed to be given thanks to the advances of cryo-electron
microscopy recognized in the 2018 Nobel Prize. We will take a simple description of
permanent charges to capture some essence of the effects. More precisely, we take
Q(X) as in ([8]), for some a0 < A < B < b0,

Q(X) =

{
0, X ∈ (a0, A) ∪ (B, b0)

2Q0, X ∈ (A,B).
(2.3)

We will be interested in the case where |Q0| is large relative to Lk’s and Rk’s.
The cross-section area A(X) typical has the property that A(X) is much smaller

for X ∈ (A,B) (the neck region of the channel) than that for X 6∈ [A,B].

2.2 Dimensionless of the quasi-one-dimensional PNP model

First of all, we assume

Assumption 2.1. Dk(X) = D(X)Dk for some dimensionless function D(X) and
dimensional constant Dk and ε(X) = εr is a constant.

Let C0 be a characteristic concentration of the ion solution. Recall that the Debye
screening length is

λD =

√
εrε0kBT

e20C0
.

We now make a dimensionless re-scaling of the variables in system (2.1) as follows.

ε =
λD

b0 − a0
, x =

X − a0
b0 − a0

, h(x) =
A(X)

(b0 − a0)2
,

Q(x) =
Q(X)

C0
, φ(x) =

e0
kBT

Φ(X), ck(x) =
Ck(X)

C0
,

µ̄k(x) =
1

kBT
µk(X), D(x) = D(X), Jk =

Jk
(b0 − a0)C0Dk

.

(2.4)

In terms of the new variables and with the introduction of u = εφ and w = x,
system (2.1) is recast to

εφ̇ =u, εu̇ = −
n∑
s=1

zscs −Q(w)− εh′(w)

h(w)
u,

εċk =− zkcku−
εJk

D(w)h(w)
, J̇k = 0, ẇ = 1,

(2.5)

where the symbol dot denotes the derivative with respect to the x-variable. The
autonomous system (2.5) can be then treated as a dynamical system with phase
space R2n+3 and state variables (φ, u, c1, · · · , cn, J1, · · · , Jn, w).

The boundary condition (2.2) becomes

φ(0) =V, ck(0) = Lk; φ(1) = 0, ck(1) = Rk, (2.6)
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where

V :=
e0
kBT

V, Lk :=
Lk
C0
, Rk :=

Rk
C0

.

The permanent charge Q(x) is now

Q(x) =

{
0, x ∈ (0, a) ∪ (b, 1)

2Q0, x ∈ (a, b),
(2.7)

where

0 < a =
A− a0
a1 − a0

< b =
B − a0
a1 − a0

< 1.

In the sequel, we will take the ideal component µidk only for the electrochemical
potential µk. In terms of the new variables, it becomes

µ̄k(x) = µ̄idk (x) = zkφ(x) + ln ck(x).

There are two distinguished singular parameters in this problem: ε and Q0. Our
goal is to obtain an expansion of the solution of the boundary value problem in small
ε and large Q0. The correct order to treat this two limiting process is, firstly, to take
large Q0, and then, for fixed Q0, to take ε small; that is, we will assume

Assumption 2.2. The dimensionless parameters |Q0| is large and ε is small so that
ε|Q0| is small.

Interested readers may check Remark 2.1 in [38] for a detailed discussion on phys-
ical basis of Assumption 2.2. The mathematical consequence of the key assumption
of smallness of ε is that the boundary value problem (BVP) (2.5) and (2.6) can be
treated as a singularly perturbed problem. A general geometric framework for ana-
lyzing the singularly perturbed BVP of PNP type systems has been developed in
[8, 19, 24, 25, 28] for classical PNP systems and in [18, 22, 27] for PNP systems with
finite ion sizes.

In this work, we will consider the BVP for 1 : 1 ionic mixtures, that is, one cation
of valence z1 = 1 and one anion of valence z2 = −1. We will be interested in properties
of fluxes Jk for large |Q0|.

2.3 A relevant result: governing system F (A) = 0 for n = 2

We first recall relevant results in [8] that our work will be based on. For n = 2 with
z1 > 0 > z2, the authors of [8] applied geometric singular perturbation theory to a
construction of the singular orbit of the BVP (2.5) and (2.6). The BVP is reduced
to a connecting problem: finding an orbit of (2.5) from

B0 = {(V, u, L1, L2, J1, J2, 0) : arbitrary u, J1, J2}

to
B1 = {(0, u,R1, R2, J1, J2, 1) : arbitrary u, J1, J2}.

Due to the jumps of permanent charge Q(x) at x = a and x = b, the construction
of singular orbits is naturally split into three intervals [0, a], [a, b], [b, 1] as follows. To
do so, one introduces (unknown) values of (φ, c1, c2) at x = a and x = b:

φ(a) = φa, c1(a) = ca1, c2(a) = ca2; φ(b) = φb, c1(b) = cb1, c2(a) = cb2. (2.8)

6



Then these values determine (boundary) conditions at x = a and x = b as

Ba = {(φa, u, ca1, ca2, J1, J2, a) : arbitrary u, J1, J2},

and
Bb = {(φb, u, cb1, cb2, J1, J2, b) : arbitrary u, J1, J2}.

On each interval, a singular orbit typically consists of two singular layers and one
regular layer. See Figure 1 (a modification of Figure 1 in [38]) for an illustration.

Figure 1: An illustration of a singular connecting orbit projected to the space of
(u, z1c1 + z2c2, w). Boundary layers Γr0 and Γl1 at w = 0 and w = 1 exist if elec-
troneutrality boundary conditions are not assumed.

(i) On interval [0, a], a singular orbit from B0 to Ba consists of two singular layers
located at x = 0 and x = a, denoted as Γl0 and Γla, and one regular layer Λl.
Furthermore, with the preassigned values φa, ca1 and ca2, the flux J lk and ul(a)
are uniquely determined so that

(φa, ul(a), ca1, c
a
2, J

l
1, J

l
2, a) ∈ Ba.

(ii) On interval [a, b], a singular orbit from Ba to Bb consists of two singular layers
located at x = a and x = b, denoted as Γra and Γlb, and one regular layer Λm.
Furthermore, with the preassigned values (φa, ca1, c

a
2) and (φb, cb1, c

b
2, b), the flux

Jmk , um(a) and um(b) are uniquely determined so that

(φa, um(a), ca1, c
a
2, J

m
1 , J

m
2 , a) ∈ Ba and (φb, um(b), cb1, c

b
2, J

m
1 , J

m
2 , b) ∈ Bb.

(iii) On interval [b, 1], a singular orbit from Bb to B1 consists of two singular layers
are located at x = b and x = 1, denoted as Γrb and Γl1, and one regular layer Λr.
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Furthermore, with the preassigned values φb, cb1 and cb2, the flux Jrk and ur(b)
are uniquely determined so that

(φb, ur(b), c
b
1, c

b
2, J

r
1 , J

r
2 , b) ∈ Bb.

Requiring the singular orbit of the connecting problem to be connected leads to
the matching conditions

J lk = Jmk = Jrk for k = 1, 2, ul(a) = um(a) and um(b) = ur(b). (2.9)

The number of matching conditions is six, which is exactly the same number of
unknowns preassigned in (2.8). The singular connecting problem is then reduced to
the governing system (2.9) (see [8] for an explicit form of the governing system).

As an application of the governing system (2.9), ion channel problems for two
ion species with small permanent charge was treated in [19] as mentioned in the
introduction. We comment that it is much harder to analyze the situation with large
permanent charge treated in this work. In [19], the permanent charge is assumed to
be small (in absolute value) so the singular solution has a regular Taylor expansion
in Q0. For large Q0 or small ν = 1/Q0, regular expansions of a singular solution in
ν would not work and it was not clear how the expansion in ν should look like. It is
the further reduction of the governing system (2.9) in [8] that allows us to start the
analysis for large permanent charge. The expansion of a singular solution in small ν
turns out to be quite irregular (see Corollary 3.4 and Remark 3.2). We now recall the
further reduction of the governing system (2.9) in [8] for the special case considered
in this work.

In [8], for z1 = 1 and z2 = −1, the governing system (2.9) is reduced to an
equation with only one unknown; more precisely, set ca1c

a
2 = A2 and cb1c

b
2 = B2 with

A > 0 and B > 0. Denote L1L2 = L2, R1R2 = R2, and

α =
H(a)

H(1)
and β =

H(b)

H(1)
where H(x) =

∫ x

0

1

D(s)h(s)
ds.

(Strictly speaking, in [8], D(s) = 1, but the proof there works for general D(s) with
only minor changes.) Then, the governing system is reduced to F (A) = 0 with

F (A) =e−(J1+J2)y
(√

Q2
0 +A2 − J2 − J1

J1 + J2
Q0

)
+
J2 − J1
J1 + J2

Q0 −
√
Q2

0 +B2, (2.10)

where B, y, J1 and J2 are determined in terms of the variable A by

B =
1− β
α

(L−A) +R, J1 + J2 = 2
L−A
H(a)

,

J2 − J1 =
2(L−A)

H(a) ln BL
AR

(
ln
BL

AR
− V − ln

L1(
√
Q2

0 +B2 −Q0)

R1(
√
Q2

0 +A2 −Q0)

−
√
Q2

0 +B2 −
√
Q2

0 +A2

Q0
− (β − α)(L−A)

αQ0

)
,

(J2 − J1)y =
(β − α)(L−A)

αQ0
+

√
Q2

0 +B2 −
√
Q2

0 +A2

Q0
.

(2.11)
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For a given Q0, once a positive root A of F (A) = 0 is determined, a singular orbit
can be constructed, in particular, the preassigned quantities in (2.8) are given by ([8])

ca1 =
(√

Q2
0 +A2 −Q0

)
exp

{√Q2
0 +A2 −A
Q0

}
, ca2 =

A2

ca1
,

cb1 =
(√

Q2
0 +B2 −Q0

)
exp

{√Q2
0 +B2 −B
Q0

}
, cb2 =

B2

cb1
,

φb =
ln B

R

ln BL
AR

(
V + ln

L1(
√
Q2

0 +B2 −Q0)

R1(
√
Q2

0 +A2 −Q0)
+

√
Q2

0 +B2 −
√
Q2

0 +A2

Q0

+
(β − α)(L−A)

αQ0

)
+ ln

R1√
Q2

0 +B2 −Q0

−
√
Q2

0 +B2 −B
Q0

,

φa =φb − (1− α)L+ αR−A
αQ0

.

(2.12)

Working with this further reduction (2.10), we are able to show that, for ν = 1/Q0

small, there is a smooth function A = A(ν) = A0 + A1ν + O(ν2) so that F (A) = 0.
The expansions for the singular orbit can then be derived directly (see Section 7).

3 Expansion of singular orbits in large Q0

Recall that we are interested in large |Q0| or small ν = 1/Q0. For definiteness, we
will consider the case where Q0 > 0 so that ν > 0.

In replacing Q0 with 1/ν in (2.10), we have, viewing F as a function of A and ν,

F (A, ν) =
1

ν
e−(J1+J2)y

(√
1 + ν2A2 − J2 − J1

J1 + J2

)
− 1

ν

(√
1 + ν2B2 − J2 − J1

J1 + J2

)
, (3.1)

where the quantities in (2.11) are now given by

B =
1− β
α

(L−A) +R, J1 + J2 = 2
L−A
H(a)

,

J2 − J1 =
2(L−A)

H(a) ln BL
AR

(
ln
BL

AR
− V − ln

L1

R1
− ln

√
1 + ν2B2 − 1√
1 + ν2A2 − 1

−
√

1 + ν2B2 +
√

1 + ν2A2 − β − α
α

(L−A)ν

)
,

(J2 − J1)y =
β − α
α

(L−A)ν +
√

1 + ν2B2 −
√

1 + ν2A2.

(3.2)

We will show, in Proposition 3.2, that there is ν0 > 0 small such that F (A, ν) = 0
has a unique smooth solution A = A(ν) for ν ∈ [0, ν0). We will be interested in the
expansions

A(ν) =A0 +A1ν +O(ν2), B(ν) = B0 +B1ν +O(ν2),

J1(ν) =J10 + J11ν +O(ν2), J2(ν) = J20 + J21ν +O(ν2),

y(ν) =y0 + y1ν + y2ν
2 +O(ν3),

(3.3)

and, based on these expansions, effects of small ν > 0 on the fluxes J1(ν) and J2(ν)
will be examined. The y2ν

2 term is need in Appendix B (Section 7).
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3.1 Zeroth order terms A0 and B0

In Appendix A (Section 6), we show that if A = L (so that J1 + J2 = 0 from (3.2)),
then, for a given (Q0, Lk, Rk), there is a unique V so that J1 + J2 = 0. Thus, A = L
does not provide a singular orbit in general. Also, it was shown (Proposition 4.1 in
[9]) that, for a given (V,Lk, Rk), there is at most one Q0 such that J1−J2 = 0. Thus,
in general, J1 − J2 6= 0. Since we are interested in the process of large Q0, in the
following, we will assume J1 ± J2 6= 0.

Proposition 3.1. Under the assumption that J1 ± J2 6= 0, the function F (A, ν) is
defined at ν = 0, and

F (A, 0) =
β − α
α

(L−A)
V + ln L1

R1
− 2 ln A

B

V + ln L1
R1
− ln AL

BR

. (3.4)

Furthermore, F (A, 0) = 0 has a unique solution A = A0 (and B = B0) given by

A0 =

√
eV L1

(1− β)
√
eV L1 + α

√
R1

(
(1− β)L+ αR

)
,

B0 =

√
R1

(1− β)
√
eV L1 + α

√
R1

(
(1− β)L+ αR

)
.

(3.5)

Consequently,

y0 =0, y1 =
β − α

2
H(1),

J10 =0, J20 =
2
√
L1R1

H(1)

√
L2 −

√
eVR2

(1− β)
√
eV L1 + α

√
R1

.
(3.6)

In particular, large positive permanent charge inhibits the flux of cations.

Proof. Using the expansions of
√

1 + x and ln(1 + x) about x = 0, one has, from the
last two equations in (3.2),

J2 − J1 =
2(L−A)

H(a) ln BL
AR

(
ln
AL

BR
− V − ln

L1

R1
− β − α

α
(L−A)ν − B2 −A2

4
ν2 +O(ν4)

)
,

(J2 − J1)y =
β − α
α

(L−A)ν +
B2 −A2

2
ν2 +O(ν4).

Thus, y = Y1(A)ν +O(ν2) where

Y1(A) =
β − α

2

H(1) ln BL
AR

ln AL
BR − V − ln L1

R1

. (3.7)

In particular, y0 = 0. It then follows from (3.1) and (3.2) that

F (A, ν) =
1

ν

(
1− (J1 + J2)Y1(A)ν +O(ν2)

)(
1− J2 − J1

J2 + J1
+

1

2
A2ν2 +O(ν4)

)
− 1

ν

(
1− J2 − J1

J2 + J1
+

1

2
B2ν2 +O(ν4)

)
=((J2 − J1)− (J2 + J1))Y1(A) +O(ν)

=
β − α
α

(L−A)
V + ln L1

R1
− 2 ln A

B

V + ln L1
R1
− ln AL

BR

+O(ν).

(3.8)
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Formula (3.4) for F (A, 0) then follows.
Hence, A = A0 is a solution of F (A, 0) = 0 if and only if

V + ln
L1

R1
− 2 ln

A0

B0
= 0.

The latter together with B0 = (1− β)(L− A0)/α + R yield formulas for A0 and B0

in (3.5). The formula for y1 then follows from (3.7).

It follows from (3.2) that J20 − J10 = J20 + J10 = 2(L−A0)
H(a) . One then has J10 = 0

and the formula for J20 using that of A0.

In order to show that, for ν near zero, F (A, ν) = 0 has a unique smooth solution
A = A(ν) with A(0) = A0, a natural approach is to applied the Implicit Function
Theorem. Given the singular appearance of ν in F (A, ν), we will take a different
approach to avoid the complication about the smoothness of F at ν = 0 (see Remark
3.1). We introduce G(A, ν) = νF (A, ν); that is,

G(A, ν) = e−(J1+J2)y
(√

1 + ν2A2 − J2 − J1
J1 + J2

)
+
J2 − J1
J1 + J2

−
√

1 + ν2B2. (3.9)

Note that G(A, ν) is smooth near (A0, 0) and, for ν 6= 0, G(A, ν) = 0 is equivalent to
F (A, ν) = 0.

Proposition 3.2. There exists ν0 > 0 such that F (A, ν) = 0 has a unique smooth
solution A(ν) = A0 +A1ν +O(ν2) for ν ∈ [0, ν0) with

A1 =
α(β − α)eV L1R1((1− β)L+ αR)

2
(
(1− β)

√
eV L1 + α

√
R1

)3 (√
e−V L2 −

√
R2

)
+

α(V − lnL2 + lnR2)((1− β)L+ αR)3

8(β − α)(
√
e−V L2 −

√
R2)
(
(1− β)

√
eV L1 + α

√
R1

)3 (eV L1 −R1

)
.

(3.10)

Accordingly, B1 = −1−β
α A1.

Proof. Recall that, for ν 6= 0, G(A, ν) = 0 and F (A, ν) = 0 have the same solution.
It follows from (3.9) that G(A, 0) = 0, and

Gν(A, ν) = −ye−(J1+J2)y(
√

1 + ν2A2 − J2 − J1
J2 + J1

)∂ν(J1 + J2)

− (J1 + J2)e
−(J1+J2)y(1 +

√
1 + ν2A2 − J2 − J1

J2 + J1
)∂νy

+ e−(J1+J2)y(
A2ν√

1 + ν2A2
− ∂ν

J2 − J1
J2 + J1

) + ∂ν
J2 − J1
J2 + J1

− B2ν√
1 + ν2B2

=
(
(J2 − J1)− (J2 + J1)

)
Y1(A) +O(ν).

One has, from (3.8), that Gν(A, 0) = F (A, 0), particularly, Gν(A0, 0) = F (A0, 0) = 0.
Furthermore, a direct calculation gives

GAν(A0, 0) =− 4(β − α)

α2

(1− β)L+ αR

V − lnL2 + lnR2

L−A0

A0B0
,

Gνν(A0, 0) =
4(β − α)2

α2

(L−A0)
2

V − lnL2 + lnR2
+A2

0 −B2
0 .

11



Substitute (3.5) for A0 and B0 to get

GAν(A0, 0) =
4(β − α)

α

(1− β)
√
eV L1 + α

√
R1

(1− β)L+ αR

√
e−V L2 −

√
R2

−V + lnL2 − lnR2
> 0,

Gνν(A0, 0) =
4(β − α)2

V − lnL2 + lnR2

eV L1R1(
√
e−V L2 −

√
R2)

2

((1− β)
√
eV L1 + α

√
R1)2

+
(eV L1 −R1)((1− β)L+ αR)2

((1− β)
√
eV L1 + α

√
R1)2

.

(3.11)

We now consider the Hamiltonian system

A′ = Gν(A, ν), ν ′ = −GA(A, ν) (3.12)

with the Hamiltonian function G(A, ν). Note that (A, ν) = (A0, 0) is an equilibrium
of (3.12) and the linearization at (A0, 0) is(

GAν(A0, 0) Gνν(A0, 0)
0 −GAν(A0, 0)

)
,

which is hyperbolic with eigenvalues ±GAν(A0, 0). The eigenvector associated to
GAν(A0, 0) > 0 is (1, 0)T and that associated to −GAν(A0, 0) < 0 is (ρ, 1)T with

ρ = − Gνν(A0, 0)

2GAν(A0, 0)
.

Therefore, there are exactly two invariant manifolds through (A0, 0), the stable man-
ifold W s and the unstable manifold W u, of (A0, 0). Furthermore, W s is tangent to
(1, 0)T at (A0, 0) and W s is tangent to (ρ, 1)T at (A0, 0).

Note that {ν = 0} is invariant and is tangent to (1, 0)T . Thus, W u is determined
by ν = 0 which is clearly a solution of G(A, ν) = νF (A, ν) = 0 but is not a solution
of F (A, ν) = 0 from (3.8). Since W s is tangent to (ρ, 1)T at (A0, 0), locally near
(A, ν) = (A0, 0), W s is determined by a smooth function A(ν) = A0 + ρν + O(ν2).
Hence,

A1 = ρ = − Gνν(A0, 0)

2GAν(A0, 0)
. (3.13)

Substituting (3.11) into (3.13) yields (3.10).

Remark 3.1. The advantage of the approach in Proposition 3.2 is the bypass of check-
ing the smoothness of F (A, ν) near (A0, 0). Should one establish the smoothness of
F (A, ν) near (A0, 0), then FA(A0, 0) = GAν(A0, 0) 6= 0, and hence, by the Implicit
Function Theorem,

A1 = −Fν(A0, 0)

FA(A0, 0)
.

As expected, this agrees with (3.13); indeed, since G(A, ν) = νF (A, ν), one has

Gνν(A, ν) = 2Fν(A, ν) + vFνν(A, ν) and GAν(A, ν) = FA(A, ν) + vFAν(A, ν),

and hence, Gνν(A0, 0) = 2Fν(A0, 0) and GAν(A0, 0) = FA(A0, 0).
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We are now ready to determine J11, J21 and y2 in (3.3).

Proposition 3.3. One has

J11 =
1

2H(1)(β − α)

(
(1− β)L+ αR

(1− β)
√
eV L1 + α

√
R1

)2

(eV L1 −R1),

J21 =−
(β − α)eV L1R1

(
(1− β)L+ αR

)
H(1)

(
(1− β)

√
eV L1 + α

√
R1

)3 (
√
e−V L2 −

√
R2)

+
(eV L1 −R1)

(
− V + lnL2 − lnR2

)(
(1− β)L+ αR

)3
4(β − α)H(1)(

√
e−V L2 −

√
R2)
(
(1− β)

√
eV L1 + α

√
R1

)3
− eV L1 −R1

2(β − α)H(1)

(
(1− β)L+ αR

(1− β)
√
eV L1 + α

√
R1

)2

,

(3.14)

and y2 = 0.

Proof. We first derive the formula for J11. It follows from (3.2) that

J1 =
1

2
(J1 + J2)−

1

2
(J2 − J1)

=
L−A

H(a) ln BL
AR

(
V + ln

L1

R1
+ ln

√
1 + ν2B2 − 1√
1 + ν2A2 − 1

+
√

1 + ν2B2 −
√

1 + ν2A2 +
β − α
α

(L−A)ν

)
.

Note that √
1 + ν2A2 =1 +

1

2
(A2

0 + 2A0A1ν)ν2 +O(ν4),√
1 + ν2B2 =1 +

1

2
(B2

0 + 2B0B1ν)ν2 +O(ν4).

One has
√

1 + ν2B2 −
√

1 + ν2A2 = O(ν2) and

ln

√
1 + ν2B2 − 1√
1 + ν2A2 − 1

= ln
B2

0 + 2B0B1ν +O(ν2)

A2
0 + 2A0A1ν +O(ν2)

=2 ln
B0

A0
+ 2
(B1

B0
− A1

A0

)
ν +O(ν2).

Note also that V + ln L1
R1

+ 2 ln B0
A0

= 0, which is equivalent to J10 = 0. Thus,

J11 =
L−A0

H(a) ln B0L
A0R

(
2
(B1

B0
− A1

A0

)
+
β − α
α

(L−A0)

)
.

Substituting the formulas in (3.5) and (3.10) for A0, B0, A1 and B1, one gets the
formula for J11. The formula for J21 then follows from J11 + J21 = −2A1/H(a).

Now, using the last two equations in (3.2) to rewrite y as

y =
β−α
α (L−A0)ν − β−α

α A1ν
2 +

B2
0−A2

0
2 ν2 +O(ν3)

J20 + (J21 − J11)ν +O(ν2)
,
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one recovers y0 = 0 and y1 = β−α
2 H(1) in Proposition 3.1, and obtains

y2 =
1

J20

(B2
0 −A2

0

2
− β − α

α
A1 −

β − α
2

H(1)(J21 − J11)
)
.

One can then verify that y2 = 0.

From the construction of singular orbits of system (2.1), the unknowns of the sin-
gular orbits are φa, φb, cak, c

b
k, Jk, k = 1, 2. We now provide expansions of φa, φb, cak, c

b
k

in ν and analyze the interplays between other parameters for large permanent charge.

Corollary 3.4. The quantities ca1, ca2, cb1, and cb2 in (2.8) have the following expan-
sions in ν in terms of A0, A1, B0 and B1

ca1 =
e

2
A2

0ν +
1

2
e(2A0A1 −A3

0)ν
2 +O(ν3), ca2 =

2

eν
+

2

e
A2

0 +O(ν),

cb1 =
e

2
B2

0ν +
1

2
e(2B0B1 −B3

0)ν2 +O(ν3), cb2 =
2

eν
+

2

e
B2

0 +O(ν);

(3.15)

The quantities φa and φb in (2.8) have the following expansions in ν

φa = − ln ν + φa0 + φa1ν +O(ν2), φb = − ln ν + φb0 + φb1ν +O(ν2),

where

φa0 = φb0 = ln
2

e
− 2 ln

(1− β)L+ αR

(1− β)
√
eV L1 + α

√
R1

,

φa1 =
2 ln B0

R

ln L2
R2
− V

(
2
(B1

B0
− A1

A0

)
+
β − α
α

(L−A0)

)
− 2

B1

B0
− β

α
(L−A0) + L,

φb1 =
ln B0

R

ln L2
R2
− V

(
2
(B1

B0
− A1

A0

)
+
β − α
α

(L−A0)

)
− 2

B1

B0
+B0,

(3.16)

where Ak and Bk for k = 0, 1 are as provided in Propositions 3.1 and 3.2.

Proof. These can be obtained directly from (2.12) and the expansion for A(ν).

Remark 3.2. Note that, the expansions of ca1 and cb1 in ν start with first order terms
in ν and those for ca2 and cb2 have singular terms. Furthermore, the expansions for φa

and φb involve the term ln ν. These forms of expansions in ν are harder to guess from
the governing system (2.9). It is the further reduction to (2.10) in [8] that makes our
initial guess for A(ν) in ν possible. In turn, the expansions for cak, c

b
k, φ

a and φb are
derived automatically.

We end this section with two more comments.

(i) As Q0 → ∞, or equivalently, ν → 0, from equations (3.15), (3.16), (3.6) and
(3.14), the concentrations ca1 and cb1 of cation at x = a and x = b as well as the
flux J1 of the cation tend to zero. On the other hand, the concentrations ca2
and cb2 of anion and the electric potentials φa and φb at x = a and x = b tend
to infinity. However, the flux J2 of anion tends to J20, a finite value.

(ii) Notice that there is a symmetry for the present problem. If we flip the ion
channel, then the parameter (V,Lk, Rk; a, b) converts to (−V,Rk, Lk; 1−b, 1−a)
and (α, β) converts to (1− β, 1− α). From biological consideration, one would
have the fluxes Jk’s become −Jk’s. Our formulas (3.6) for Jk0’s and (3.14) for
Jk1’s are indeed consistent with this symmetry.
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4 Effects of the large permanent charge Q0 on fluxes

The result J10 = 0 implies that large positive permanent charge inhibits the flux of
cation. We now analyze effects of large permanent charge on fluxes based on formulas
for J20, J11 and J21.

4.1 Signs and magnitudes of fluxes

Recall that the leading term for J1 is J11ν since J10 = 0 and the leading term for
J2 is J20. An observation is made in [9] (see the discussion following formula (1.5)
in [9]), that is, the sign of Jk is the same as that of µ̄k(0) − µ̄k(1). The latter is
determined by the boundary conditions – independent of the channel structure such
as the channel geometry and the distribution of the permanent charge Q(x).

The next result shows the consistence with the aforementioned observation on the
signs for large permanent charge.

Proposition 4.1. The sign of J11 is the same as the sign of the (scaled) trans-
membrane electrochemical potential µ̄1(0) − µ̄1(1) = V + lnL1 − lnR1. The sign of
J20 is the same as the sign of the (scaled) transmembrane electrochemical potential
µ̄2(0)− µ̄2(1) = −V + lnL2− lnR2. The sign of J21 may not be the same as the sign
of µ̄2(0)− µ̄2(1) but, as expected, J21 = 0 if µ̄2(0)− µ̄2(1) = 0.

Proof. The statements about J20 and J11 are clearly true from (3.6) and (3.14).
The sign of J21 will be treated in more details in Proposition 4.8. Note that

J2 = J20 + J21ν +O(ν2, ε) = 0 if µ̄2(0)− µ̄2(1) = −V + lnL2 − lnR2 = 0. It follows
from (3.6) that the zeroth order flux J20 = 0 if µ̄2(0)− µ̄2(1) = 0. Thus, it is expected
that J21 = 0 if µ̄2(0)− µ̄2(1) = 0. This is indeed the case. In fact, a direct calculation
gives that, as e−V L2 → R2,

J21 →
(
(1− β)L+ αR

)3
2(β − α)H(1)

√
R2

(
(1− β)

√
eV L1 + α

√
R1

)3 (eV L1 −R1

)
− 1

2(β − α)H(1)

(
(1− β)L+ αR

(1− β)
√
eV L1 + α

√
R1

)2

(eV L1 −R1)

=

(
eV L1 −R1

)(
(1− β)L+ αR

)
2(β − α)H(1)((1− β)

√
eVR2L1 + α

√
R2R1)

(
(1− β)L+ αR

(1− β)
√
eV L1 + α

√
R1

)2

− eV L1 −R1

2(β − α)H(1)

(
(1− β)L+ αR

(1− β)
√
eV L1 + α

√
R1

)2

= 0.

This completes the proof.

On the other hand, the channel structure affects the magnitudes of fluxes Jk’s
in general. For large permanent charge, the leading term of Jk is Jk0. Notice that
J10 = 0, independent of the channel geometry. However,

J20(α, β) =
2
√
eV L1R1

H(1)
(
(1− β)

√
eV L1 + α

√
R1

)(√e−V L2 −
√
R2

)
.

The next result follows easily.
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Proposition 4.2. If µ̄2(0)− µ̄2(1) = −V + lnL2 − lnR2 6= 0, then |J20(α, β)| → ∞
as (α, β)→ (0, 1).

Similar to the discussion for Proposition 4.11 in [19], (α, β) ≈ (0, 1) implies that,
to optimize the effect of large permanent charge Q0, the channel neck, within where
the permanent charge is constraint, should be “short” (b− a� 1) and “narrow” (the
value of h(x) is much smaller for x ∈ (a, b) than that for x 6∈ [a, b]). The same
conclusion on the channel neck property is obtained in [19] for the case of small Q0.

4.2 Saturation, monotonicity in V and scaling laws

The next two properties follow from (3.6) for Jk0’s and (3.14) for Jk1’s directly.

Proposition 4.3. [Flux and Current Saturations] For large permanent charge Q0

(small ν = 1/Q0) and to the leading order terms in ν, individual fluxes Jk’s, and
hence, the total current I saturate in |V |; more precisely, one has J20 is decreasing
in V , concave downward for V < V ∗0 and concave upward for V > V ∗0 for some V ∗0 ,
and J11 is increasing in V , concave upward for V < V ∗1 and concave downward for
V > V ∗1 for some V ∗1 . Furthermore, |J20| and |J11| are bounded in V with a bound
that can be determined from the limits

lim
V→+∞

J20 =− 1

1− β
2R

H(1)
, lim

V→−∞
J20 =

1

α

2L

H(1)
,

lim
V→+∞

J11 =− lim
V→+∞

J21 =
1

(1− β)2
((1− β)L+ αR)2

2H(1)(β − α)
,

lim
V→−∞

J11 =− lim
V→−∞

J21 = − 1

α2

((1− β)L+ αR)2

2H(1)(β − α)
.

(4.1)

Proposition 4.4. [Scaling Laws] For k = 1, 2 and for s > 0, one has

Jk0(V ; sL1, sR1, sL2, sR2) =sJk0(V ;L1, R1, L2, R2),

Jk1(V ; sL1, sR1, sL2, sR2) =s2Jk1(V ;L1, R1, L2, R2).

The linear scaling law for Jk0’s is natural. The quadratic scaling law for Jk1’s
indicates that large permanent charges significantly increase the effect of boundary
concentrations on the fluxes.

4.3 On a flux ratio for effects of permanent charges

In [29], to characterize effects of permanent charges on fluxes for given boundary
conditions, the author introduced the flux ratio

λk(Q; ε) =
Jk(Q; ε)

Jk(0; ε)
,

where, for the same boundary condition (2.6), Jk(Q; ε) is the flux of kth ion species
associated to the permanent charge Q(x) and Jk(0; ε) is the flux associated to zero
permanent charge. Since permanent charges cannot change the sign of flux, one has
λk(Q; ε) > 0.
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If λk(Q; ε) > 1, then the permanent charge Q enhances the flux in the sense that
|Jk(Q; ε)| > |Jk(0; ε)|; if λk(Q; ε) < 1, then the permanent charge Q reduces the flux
in the sense that |Jk(Q; ε)| < |Jk(0; ε)|.

In [29], the following universality of a permanent charge effect is established. For
ionic flow with one cation and one anion, let λ1(Q; ε) be the flux ratio associated to
the cation and let λ2(Q; ε) be the flux ratio associated to the anion. Under some
general conditions, one has, independent of boundary conditions,

if Q(x) ≥ 0, then, for ε > 0 small, λ1(Q; ε) ≤ λ2(Q; ε). (4.2)

Furthermore, the statement (4.2) is sharp in the sense that, depending on the bound-
ary conditions, each one of the followings is possible ([19])

(i) 1 < λ1(Q; ε) < λ2(Q; ε) (both cation and anion fluxes are enhanced);

(ii) λ1(Q; ε) < 1 < λ2(Q; ε) (cation flux is reduced but anion flux is enhanced);

(iii) λ1(Q; ε) < λ2(Q; ε) < 1 (both cation and anion fluxes are reduced).

For our case where the permanent charge Q = Q(x) ≥ 0 is given in (2.7) with
ν = 1/Q0 � 1, we will consider the leading terms Jk0 for Jk(ν) in (3.3). For cations,
we have

λ1(Q0) =
J1(Q0)

J1(0)
≈ J10
J1(0)

= 0 < 1 if V + ln
L1

R1
6= 0 (so that J1(0) 6= 0). (4.3)

Thus, large positive permanent charges inhibit the flux of cations. This contrasts
sharply to the effect of small positive permanent charge where, under some boundary
conditions, it could enhance the flux of cations (statement (i) above).

We now consider λ2(Q0) for the counter-ions. For simplicity, we assume elec-
troneutrality boundary conditions L1 = L2 = L and R1 = R2 = R in the following.

For Q0 = 0, the formula

J2(0) =
L−R

H(1)(lnL− lnR)
(−V + lnL− lnR)

is provided in equation (4.4) in [19]. Using (3.6) for J20, one has, for Q0 � 1,

λ2(Q0)− 1 =
J2(Q0)

J2(0)
− 1 ≈ J20

J2(0)
− 1 =

√
RfK(α, β)

((1− β)
√
eV L+ α

√
R)
, (4.4)

where, for a given K = (V,L,R) with ρ = L/R,

fK(α, β) =
2(ρ−

√
eV ρ) ln ρ

(ln ρ− V )(ρ− 1)
−
(
(1− β)

√
eV ρ+ α

)
, (4.5)

which is linear in (α, β). Now for a given K = (V,L,R), let

ΩK
+ =

{
(α, β) ∈ R2 : 0 < α < β < 1, fK(α, β) > 0

}
,

ΩK
− =

{
(α, β) ∈ R2 : 0 < α < β < 1, fK(α, β) < 0

}
.

Immediately, one has
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Proposition 4.5. Fix K = (V,L,R) with L > 0 and R > 0. If (α, β) ∈ ΩK
+ , then,

for Q0 > 0 large, λ2(Q0) > 1, and hence, the flux of J2 is enhanced by the large
positive permanent charge. If (α, β) ∈ ΩK

− , then, for Q0 > 0 large, λ2(Q0) < 1, and
hence, the flux of J2 is reduced by the large positive permanent charge.

Note that, for any K = (V,L,R), fK(0, 1) > 0 so (α, β) = (0, 1) ∈ ΩK
+ . Thus, if

(α, β) is close to (0, 1), then the large Q0 enhances the flux of anion.
Next, we characterize the regions ΩK

± . For fixed K = (V,L,R), denote the line
given by fK(α, β) = 0 by LK .

Lemma 4.6. The β-intercept of the line LK is strictly increasing in V and the α-
value of the intersection of LK with {β = 1} is increasing in V too.

As V → −∞, the line LK approaches the β-axis.
As V → − ln(L/R) (or eV L→ R), the line LK approaches the line {α = β}.
As V →∞, the line approaches {β = 1}.
In particular, for any K with eV L 6= R, the line Lk intersect {α = β ∈ (0, 1)} at

a unique point, and both ΩK
+ and ΩK

− are not empty.

Proof. Let ρ = L/R. The line LK is given by

β =
1√
eV ρ

α− 2(
√
e−V ρ− 1) ln ρ

(ln ρ− V )(ρ− 1)
+ 1.

The β-intercept of the line LK is given by

β(V ) = −2(
√
e−V ρ− 1) ln ρ

(ln ρ− V )(ρ− 1)
+ 1.

Thus,

β′(V ) =
ln ρ

ρ− 1

−ρ1/2V e−V/2 + ρ1/2 ln ρe−V/2 − 2ρ1/2e−V/2 + 2

(ln ρ− V )2
.

Introduce x = ρ1/2. The numerator of the second factor above becomes

g1(x) = −V e−V/2x+ 2e−V/2x lnx− 2e−V/2x+ 2, x ∈ (0,∞)

It follows from g′1(x) = e−V/2(2 lnx− V ) and g′′1(x) = 2e−V/2/x that g1(x) is concave
upward and its minimum is g1(xc) = 0 with xc = eV/2 being the only critical point
of g1(x). It is easy to see that limx→0 g1(x) = 2 > 0 and limx→∞ g1(x) = ∞. Thus,
g1(x) ≥ 0 for x ∈ (0,∞) and the equal sign occurs only at x = eV/2. Therefore, the
β-intercept β(V ) of the line LK is strictly increasing in V .

The α-value α(V ) of the intersection of the line LK with {β = 1} is

α(V ) =
2
√
eV ρ(

√
e−V ρ− 1) ln ρ

(ln ρ− V )(ρ− 1)
=

2 ln ρ

ρ− 1

ρ−
√
eV ρ

(ln ρ− V )
.

Thus,

α′(V ) =
ln ρ

ρ− 1

g2(V )

(ln ρ− V )2
,

where
g2(V ) = 2ρ− 2ρ1/2eV/2 − eV/2ρ1/2 ln ρ+ ρ1/2V eV/2.
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Note that

g′2(V ) = −1

2
eV/2ρ1/2 ln ρ+

1

2
ρ1/2V eV/2.

Thus, g2(V ) has exactly one critical point Vc = ln ρ. It follows from

g2(Vc) = 0, lim
V→−∞

g2(V ) = 2ρ, lim
V→∞

g2(V ) =∞

that g2(V ) ≥ 0 and the equal sign occurs only for V = ln ρ. We thus conclude that
the α-value of the intersection of LK with {β = 1} is increasing in V too.

Note that, as eV ρ→ 1, β(V )→ 0. The rest statement follows directly.

4.4 Monotonicity of J2 in Q0: Sign of J21

For simplicity, we assume electroneutrality boundary conditions L1 = L2 = L and
R1 = R2 = R in the following.

Note that J1 = J11ν+O(ν2) and J11 has the same sign as that of µ̄1(0)− µ̄1(1) =
V + lnL− lnR. The next statement is straightforward.

Proposition 4.7. Up to the leading order O(ν), J1 increases in ν (decreases in Q0)
if V + lnL− lnR > 0 and decreases in ν (increases in Q0) if V + lnL− lnR < 0.

Recall that J20 has the same sign as that of µ̄2(0) − µ̄2(1) = −V + lnL − lnR.
But J21 may not have the same sign as that of −V + lnL − lnR. The geometry of
the channel and the boundary conditions work together to influence the sign of J21.
Since J2 = J20 + J21ν + O(ν2). Up to O(ν), the monotonicity of J2 in ν (hence in
Q0) is determined by the sign of J21.

Note that, if V + lnL− lnR = 0, then, from (3.14),

J21 = −
(β − α)eV LR

(
(1− β)L+ αR

)
H(1)

(
(1− β)

√
eV L+ α

√
R
)3 (
√
e−V L−

√
R),

which has opposite sign as that of µ̄2(0) − µ̄2(1) = −V + lnL − lnR, and hence,
J20J21 < 0. In this case, up to the leading order O(ν), J2 = J20 + J21ν is decreasing
in ν (increasing in Q0) if −V + lnL − lnR > 0 and is increasing in ν (decreasing in
Q0) if −V + lnL− lnR < 0.

In general, for fixed (α, β), J21 in (3.14) can be rewritten as

J21 =
((1− β)s+ α)R2

2H(1)(β − α) ((1− β)s+ αt)3
G(s, t), (4.6)

where s = L/R, t =
√
e−V L/R, and

G(s, t) =− 2s2(β − α)2t(t− 1)

+ ((1− β)s+ α)(s2 − t2)
(

(1− β)s+ α)
t ln t

t− 1
− ((1− β)s+ αt)

)
.

(4.7)

It is complicated to determine the sign of J21. We will provide a partial result to
indicate that the sign of J21 can be the same or opposite as that of µ̄2(0)− µ̄2(1) =
−V + lnL− lnR.

Notice that if t = 1, then J21(t) = 0. In a neighborhood of t = 1, we have the
following result.
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Proposition 4.8. Let s = L/R and t =
√
e−V L/R. For fixed (α, β), there are two

positive functions s∗1 = s∗1(α, β) and s∗2 = s∗2(α, β) with s∗1 < 1 < s∗2 such that

(i) if s ∈ (0, s∗1)
⋃

(s∗2,∞), then there exists a small positive number θ1 such that, for
t ∈ (1 − θ1, 1 + θ1) and t 6= 1, J20J21 > 0, and hence, J20 + J21ν is increasing
in ν for small ν (decreasing in Q0 for large Q0 > 0);

(ii) if s ∈ (s∗1, s
∗
2), then there exists a small positive number θ2 so that, for t ∈

(1− θ2, 1 + θ2) and t 6= 1, J20J21 < 0, and hence, J20 + J21ν is decreasing in ν
for small ν > 0 (increasing in Q0 for large Q0 > 0).

Proof. For function G(s, t) in (4.7), let

g(s) = lim
t→1

G(s, t)

t− 1
. (4.8)

Then, g(s) = (1 − β)2s4 −
(
(1− β)2 + α2 + 4(β − α)2

)
s2 + α2. Note that, g(s) is

even in s, g(0) = α2 > 0, g(s) > 0 if s � 1, and g(1) = −4(β − α)2 < 0. Thus,
g(s) has exactly two distinct positive roots s∗1 = s∗1(α, β) and s∗2 = s∗2(α, β) with
0 < s∗1 < 1 < s∗2. In particular, if s ∈ (0, s∗1)

⋃
(s∗2,∞), then g(s) > 0, and hence, for t

near 1, G(s,t)
t−1 > 0 from (4.8); and if s ∈ (s∗1, s

∗
2), then g(s) < 0, and hence, for t near

1, G(s,t)
t−1 < 0 from (4.8). All conclusions follow since µ2(0) − µ2(1) and J20 have the

same sign as that of (t− 1).

4.5 The declining phenomenon

We recall the so-called declining phenomenon: For fixed V and L, as R decreases to
zero, the (scaled) transmembrane electrochemical potential for the counter-ion µ̄2(0)−
µ̄2(1) = −V + lnL − lnR increases to infinity but the magnitude of counterion flux
(|J2| in the setting since Q0 > 0) decreases monotonically to zero.

Remark 5.1 from [38]: The phenomenon was well-known in the physiology commu-
nity. Unfortunately, we could not find references stating precisely this phenomenon.
We have contacted many leading experts who are all recognizing this phenomenon.
Some experts mention this phenomena as an example of ‘exchange diffusion’ and/or
long channel phenomena.

This phenomenon is rather counterintuitive. Recall the Nernst-Planck equation

−J2 = D2(x)h(x)c2(x; ν)
d

dx
µ̄2(x; ν).

Since D2(x) and h(x) are fixed, we will treat them as of order O(1) quantities so that
they do not contribute much to the near zero flux scenario when R is small. Thus,
as far as the near zero flux mechanism is concerned, one has

−J2 ≈ c2(x; ν)µ̄′2(x; ν). (4.9)

One sees that the gradient µ̄′2(x; ν) of the electrochemical potential is the main
driving force for the flux J2. Intuitively, large drop of (or transmembrane) electro-
chemical potential µ̄2(0) − µ̄2(1) of µ̄2 produces large flux J2. In this sense, the
declining curve phenomenon is rather counterintuitive. A careful look at (4.9) reveals
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that there is only one possibility for the declining curve phenomenon; that is, when-
ever µ̄′2(x; ν) is large, c2(x; ν) has to be much smaller in order to produce a small
flux |J2|. In [38], the analytical results of the internal dynamics from this work is
applied to show that this is indeed the case. We refer the readers to [38] for detailed
discussions.

5 Conclusion remarks

In this work, for a simple form of the permanent charge distribution, we investigate
effects of large magnitude of permanent charges on the ionic flow. The analysis is
based on a quasi-one-dimensional classical Poisson-Nernst-Planck model. Our result
provides expansions for ionic fluxes, concentrations and electric potential in the re-
ciprocal of the large permanent charge. The explicit leading terms of the expansions
allow one to analyze concrete effects of large permanent charges and their nonlinear
interplay with boundary conditions. As expected, the effects are significantly different
from those of small permanent charges. Among others, we find

(i) large permanent charges produce flux and current saturations as transmembrane
electric potential increases (Proposition 4.3);

(ii) large permanent charges inhibit the flux of co-ions (Display (4.3)) but, depend-
ing on boundary conditions and channel geometry, either enhance or reduce the
flux of counter-ion (Proposition 4.5);

(iii) the magnitude of the co-ion flux is decreasing in large permanent charge (Propo-
sition 4.7) but, depending on boundary conditions and channel geometry, the
counter-ion flux could either decease or increase in large permanent charge
(Proposition 4.8);

(iv) large permanent charges are responsible for the counter-intuitive declining phe-
nomenon – increasing of electrochemical potential of counter-ion species leads
to decreasing of counter-ion flux (Section 4.5 and detailed discussion in [38]).

6 Appendix A. On A = L

We will establish the statement used in the beginning of Section 3.1; that is, A = L
(so that J1 + J2 = 0 from (3.2)) does not provide a singular orbit in general in the
sense that, for a given (Q0, Lk, Rk), there is a unique V so that J1 + J2 = 0.

For simplicity, we assume L1 = L2 = L and R1 = R2 = R.
It follows from Corollary 3.3 in [8] that, if A = L, then ca,l1 = ca,l2 = L and

φa,l = φa − 1

2
ln
ca2
ca1

= φa − ln
L

ca1
. (6.1)

For x ∈ (0, a), it then follows from system (19) in [8] that

J1 + J2 = 0, c1(x) = c2(x) = L;

φ(x) = V − J1
L
H(x), φa,l = V − J1

L
H(a).

(6.2)
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For x ∈ (b, 1), it then follows from equation (41) in [8] and J1 + J2 = 0 that

cb,rk =ck(x) = R = B;

φ(x) =φb,r − J1
R

(H(x)−H(b)), φb,r = −J1
R

(H(1)−H(b)),
(6.3)

and

φb,r = φb − ln
R

cb1
. (6.4)

For x ∈ (a, b), it then follows from equation (33) in [8] and J1 + J2 = 0 that

(c1(x) +Q0)
2 =(ca,m1 +Q0)

2 − 2Q0J1(H(x)−H(a)),

Q0φ(x)− c1(x) =Q0φ
a,m − ca,m1 = Q0φ

b,m − cb,m1 .

Therefore,

J1 = −J2 =
(ca,m1 +Q0)

2 − (cb,m1 +Q0)
2

2Q0(H(b)−H(a))
, φb,m − φa,m =

cb,m1 − ca,m1

Q0
. (6.5)

The first two equations of (43) in [8] are definitions of φa,m and φb,m, and the next
two equations correspond to ul(a) = um(a) and um(b) = ur(b), respectively. They
give rise to, with A = L and B = R,

ca1 =
(√

Q2
0 + L2 −Q0

)
exp

{√Q2
0 + L2 − L
Q0

}
,

cb1 =
(√

Q2
0 +R2 −Q0

)
exp

{√Q2
0 +R2 −R
Q0

}
;

ca2 =
L2√

Q2
0 + L2 −Q0

exp
{
−
√
Q2

0 + L2 − L
Q0

}
,

cb2 =
R2√

Q2
0 +R2 −Q0

exp
{
−
√
Q2

0 +R2 −R
Q0

}
.

Hence,

φa − φa,m = ln

√
Q2

0 + L2 −Q0

ca1
= −

√
Q2

0 + L2 − L
Q0

,

φb − φb,m = ln

√
Q2

0 +R2 −Q0

ln cb1
= −

√
Q2

0 +R2 −R
Q0

,

ca,m1 =eφ
a−φa,mca1 =

√
Q2

0 + L2 −Q0, ca,m2 =
√
Q2

0 + L2 +Q0,

cb,m1 =eφ
b−φb,mcb1 =

√
Q2

0 +R2 −Q0, cb,m2 =
√
Q2

0 +R2 +Q0.

(6.6)

Therefore, from (6.5),

J1 = −J2 =
L2 −R2

2Q0(H(b)−H(a))
, φb,m − φa,m =

√
Q2

0 +R2 −
√
Q2

0 + L2

Q0
.
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Note also, from (6.6), that

φb,m − φa,m =φb − φa +

√
Q2

0 +R2 −R
Q0

−
√
Q2

0 + L2 − L
Q0

.

Thus, agreeing with (46) in [8],

φb − φa =
R− L
Q0

. (6.7)

But, from (6.1) and (6.2) for φa,l and from (6.3) and (6.4) for φb,r, one has

φa + ln

√
Q2

0 + L2 −Q0

L
+

√
Q2

0 + L2 − L
Q0

= V − H(a)(L2 −R2)

2(H(b)−H(a))LQ0
,

φb + ln

√
Q2

0 +R2 −Q0

R
+

√
Q2

0 +R2 −R
Q0

=
(H(1)−H(b))(L2 −R2)

2(H(b)−H(a))RQ0
.

It follows that,

φb − φa =− V +
(H(1)−H(b))L−H(a)R

H(b)−H(a)

L2 −R2

2LRQ0

− ln

√
Q2

0 +R2 −Q0

R
−
√
Q2

0 +R2 −R
Q0

+ ln

√
Q2

0 + L2 −Q0

L
+

√
Q2

0 + L2 − L
Q0

.

(6.8)

Finally, combining (6.7) and (6.8), one has, if A = L so that J1 + J2 = 0, then

V =− ln
L

R
+

(H(1)−H(b))L+H(a)R

H(b)−H(a)

L2 −R2

2LRQ0

+ ln

√
Q2

0 + L2 −Q0√
Q2

0 +R2 −Q0

+

√
Q2

0 + L2 −
√
Q2

0 +R2

Q0
.

(6.9)

7 Appendix B. Existence for BVP with ε > 0 small

For fixed large Q0 or small ν, we will determine the singular orbit first and then apply
the Exchange Lemma to show, for ε > 0 small, there exists a unique solution of the
BVP near the singular orbit.

7.1 The singular orbit

Once A = A0 +A1ν +O(ν2) is determined, the intermediate variables introduced in
(2.8) can be determined from (2.12). A singular orbit can then be found by applying
the result in [8] directly. We will provide the singular slow orbits over each subinterval
and refer the details to the relevant result in [8]. As a by-product, we provide details
about what happens to the internal dynamics that leads to J10 = 0: over different
subintervals, the causes for J10 = 0 are different (Corollaries 7.2, 7.4 and 7.6).
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7.1.1 Internal dynamics over the interval (0, a).

The singular slow orbit (φ, c1, c2) can be obtained from the display (24) in [8].

Proposition 7.1. For x ∈ (0, a), k = 1, 2,

ck(x; ν) = ck0(x) + ck1(x)ν +O(ν2), φ(x; ν) =φ0(x) + φ1(x)ν +O(ν2),

where

ck0(x) =L− J20
2
H(x), ck1(x) = −J11 + J21

2
H(x),

φ0(x) =V + lnL− ln c10(x), φ1(x) = −c11(x)

c10(x)
+

2J11
J20

ln
c10(x)

L
.

The following is then a direct consequence.

Corollary 7.2. Over the interval (0, a), the electrochemical potentials are

µ̄k(x; ν) = µ̄k0(x) + µ̄k1(x)ν +O(ν2)

for k = 1, 2, where

µ̄10(x) =φ0(x) + ln c10(x) = V + lnL, µ̄11(x) = φ1(x) +
c11(x)

c10(x)
= 2

J11
J20

ln
c10(x)

L
,

µ̄20(x) =− V − lnL+ 2 ln c20(x), µ̄21(x) =
2c21(x)

c20(x)
− 2J11

J20
ln
c20(x)

L
.

In particular, µ̄′10(x) = 0, and hence, J10 = 0 over the interval (0, a).

7.1.2 Internal dynamics over the interval (a, b).

The singular slow orbit (φ, c1, c2) can be obtained from the display (35) in [8].

Proposition 7.3. For x ∈ (a, b),

c1(x; ν) =c10(x) + c11(x)ν + c12(x)ν2 +O(ν3),

c2(x; ν) =
2

ν
+

(
1

2
A2

0 − J11(H(x)−H(a))

)
ν +O(ν2),

φ(x; ν) =− ln ν + φ0(x) + φ1(x)ν +O(ν2),

where

c10(x) =0, c11(x) =
1

2
A2

0 − J11(H(x)−H(a)),

c12(x) =− H(x)−H(a)

2H(a)
(L−A0)A

2
0 +A0A1,

φ0(x) = ln
2eV L

A2
0

, φ1(x) = φa1 −A0 +
J20
2

(H(x)−H(a)),

where A0 is given in (3.5), A1 is given in (3.10), and φa1 is in (3.16).
In particular, c10(x) = 0 implies that J10 = 0 over the interval (a, b).
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As an immediate consequence, one has

Corollary 7.4. Over the interval (a, b), the electrochemical potentials are

µ̄k(x; ν) = µ̄k0(x) + µ̄k1(x)ν +O(ν2)

for k = 1, 2, where

µ̄10(x) =φ0(x) + ln c11(x) = ln
(H(b)−H(x)

H(b)−H(a)
eV L+

H(x)−H(a)

H(b)−H(a)
R
)
,

µ̄11(x) =φ1(x) +
c12(x)

c11(x)
,

µ̄20(x) =− φ0(x) + ln 2 = ln
A2

0

eV L
,

µ̄21(x) =− φ1(x) = −φa1 +A0 −
J20
2

(H(x)−H(a)).

Proof. For µ̄1, one has

µ̄1(x) =φ(x) + ln c1(x) = − ln ν + φ0(x) + φ1(x)ν +O(ν2)

+ ln
(
c11(x)ν + c12(x)ν2 +O(ν3)

)
=φ0(x) + ln c11(x) +

(
φ1(x) +

c12(x)

c11(x)

)
ν +O(ν2).

For µ̄2(x), one has

µ̄2(x) =− φ(x) + ln c2(x) = ln ν − φ0(x)− φ1(x)ν + ln
2

ν
+O(ν2)

=− φ0(x) + ln 2− φ1(x)ν +O(ν2).

All claims on components of electrochemical potentials then follow.

7.1.3 Internal dynamics over the interval (b, 1).

The singular slow orbit (φ, c1, c2) can be obtained from the display below (41) in [8].

Proposition 7.5. For x ∈ (b, 1) and for k = 1, 2,

ck(x; ν) = ck0(x) + ck1(x)ν +O(ν2), φ(x; ν) =φ0(x) + φ1(x)ν +O(ν2),

where

c10(x) =c20(x) = R+
H(1)−H(x)

2
J20, c11(x) = c21(x) =

H(1)−H(x)

2

(
J11 + J21

)
;

φ0(x) = lnR− ln c10(x), φ1(x) = −c21(x)

c20(x)
+

2J11
J20

ln
c20(x)

R
,

where φb1 is given in (3.16).
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Corollary 7.6. Over the interval (b, 1), the electrochemical potentials are

µ̄k(x; ν) = µ̄k0(x) + µ̄k1(x)ν +O(ν2)

for k = 1, 2, where

µ̄10(x) =φ0(x) + ln c10(x) = lnR, µ̄11(x) = φ1(x) +
c11(x)

c10(x)
=

2J11
J20

ln
c20(x)

R
,

µ̄20(x) =2 ln c20(x)− lnR, µ̄21(x) = −φ1(x) +
c21(x)

c20(x)
=

2c21(x)

c20(x)
− 2J11

J20
ln
c20(x)

R
;

In particular, µ̄′10(x) = 0, and hence, J10 = 0 over the interval (b, 1).

7.2 An orbit near the singular orbit for small ε > 0

We now provide a proof for the existence and uniqueness of an orbit for ε > 0
small, near the singular orbit, of the connecting problem associated to the BVP. This
will be accomplished in several steps and by an application of the Exchange Lemma
([20, 21, 23, 32]).

Step 1. Exchange Lemma over [0, a] along Γr0 ∪ Λl ∪ Γla. Recall that

B0 = {(V, u, L1, L2, J1, J2, 0) : arbitrary u, J1, J2}.

Let M0
ε be the (positively) invariant manifold consisting of forward orbits of (2.5)

from B0. Due to the nonzero w-component, the vector field of (2.5) is not tangent to
B0, and hence, dimM0

ε = dimB0 + 1 = 4. Let

P0 = (V, u0, L1, L2, J
0
1 , J

0
2 , 0) ∈ B0 ∩W s(Zl)

be the initial point of the singular orbit.

Lemma 7.7. The intersection of M0
0 and W s(Zl) at P0 is transversal.

Proof. We will show that B0 intersect W s(Zl) transversally at P0. Since W s(Zl) is co-
dimension one, it suffices to find one non-zero vector in TP0B0 but not in TP0W

s(Zl).
Note that the unit vector in the u-direction eu = (0, 1, 0, 0, 0, 0, 0) ∈ TP0B0. We claim
that eu 6∈ TP0W

s(Zl). Suppose, on the contrary, that eu ∈ TP0W
s(Zl). Then there is

a smooth curve P (s) ∈W s(Zl) parameterized by s ∈ (−1, 1), such that,

P (0) = P0 and
d

ds
P (0) = eu. (7.1)

Let (φ(ξ; s), u(ξ; s), C(ξ; s), J(s), w(s)) be the solution of the limit fast system
with (φ(0; s), u(0; s), C(0; s), J(s), w(s)) = P (s). (Note that J and w are conserved
for the limit fast system.) Then

lim
ξ→∞

(φ(ξ; s), u(ξ; s), C(ξ; s), J(s), w(s)) = (φL(s), 0, CL(s), J(s), w(s)) ∈ Zl.

where, following from Proposition 3.2 and Corollary 3.3 in [8] that,

φL(s) =φ(0; s)− 1

2
ln
c2(0; s)

c1(0; s)
,

cL1 (s) =c1(0; s)eφ(0;s)−φ
L(s) =

√
c1(0; s)c2(0; s),

cL2 (s) =c2(0; s)eφ
L(s)−φ(0;s) =

√
c1(0; s)c2(0; s).

(7.2)
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and

1

2
u2(0; s) =c1(0; s) + c2(0; s)− cL1 (s)− cL2 (s)

=c1(0; s) + c2(0; s)− 2
√
c1(0; s)c2(0; s).

(7.3)

The second condition in (7.1) gives

∂

∂s
u(0; 0) = 1,

∂

∂s
c1(0; 0) =

∂

∂s
c2(0; 0) = 0.

Taking the derivative of (7.3) with respect to s and applying ∂
∂sck(0; 0) = 0, one

gets ∂
∂su(0; 0) = 0, which contradicts to ∂

∂su(0; 0) = 1. Thus, B0 intersects W s(Zl)
transversally at P0.

Next, recall that, for N0 = M0
0 ∩W s(Zl), with φL = V − 1

2 ln L2
L1

,

ω(N0) =
{

(φL, 0, cL1 , c
L
2 , J1, J2, 0) : arbitrary J1, J2

}
.

For δ > 0 small and Iδa = (a − δ, a + δ), let Wa = W u(ω(N0) · Iδa). Applying the
Exchange Lemma together with Lemma 7.7 along Γr0 ∪ Λl ∪ Γla, one concludes that
Mε is C1 O(ε)-close to Wa around Γla. Note that

ω(N0) · Iδa =
{

(φ(x; ν), 0, c1(x; ν), c2(x; ν), J1, J2, x) : x ∈ Iδa, any J1, J2

}
,

where (φ(x; ν), 0, c1(x; ν), c2(x; ν)) is given in Proposition 7.1 and

ck(x; ν) = L− J20
2
H(x) +O(ν), φ(x; ν) = V + lnL− ln c10(x) +O(ν).

Step 2. Transversal intersection of Wa with W s(Zm) along Γra. Let

Pa = (φa, ua, ca1, c
a
2, J

0
1 , J

0
2 , a) ∈Wa ∩W s(Zm).

be the starting point of the layer Γra, which is also the end point of the layer Γla.

Lemma 7.8. The intersection of Wa and W s(Zm) at Pa is transversal.

Proof. Note that the set Wa ∩ {J = J0} is two dimensional, and consists of points
(φ, u, c1, c2, J

0
1 , J

0
2 , w) with w = x ∈ Iδa and

ln c1 + φ = ln

(
cL1 −

J0
1 + J0

2

2
H(x)

)
+ φL − J0

1 − J0
2

J0
1 + J0

2

ln

(
1− J0

1 + J0
2

2cL1
H(x)

)
,

ln c2 − φ = ln

(
cL2 −

J0
1 + J0

2

2
H(x)

)
− φL +

J0
1 − J0

2

J0
1 + J0

2

ln

(
1− J0

1 + J0
2

2cL2
H(x)

)
,

1

2
u2 =

1

2
(ua)2 − ca1 − ca2 + c1 + c2.

We will parameterize Wa ∩ {J1 = J0
1 , J2 = J0

2} by φ and x. By differentiations with
respect to φ and x, respectively, one finds that TPa(Wa ∩ {J = J0}) is spanned by,

T1 =
(

1, (ca2 − ca1)/ua,−ca1, ca2, 0, 0, 0
)

and T2 =
(

0, (ca1 + ca2)c∗/ua, ca1c
∗, ca2c

∗, 0, 0, 1
)
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where

c∗ = − 2J0
2

2cL1 − (J0
1 + J0

2 )H(a)
H ′(a).

We claim that W s(Zm) is given by

F = F (φ, u, c1, c2, J1, J2, w) = 0 for w ∈ [a, b]

where

F =
1

2
u2 − c1 − c2 + 2

√
Q2

0 + c1c2 + 2Q0 ln

√
Q2

0 + c1c2 −Q0

c1
. (7.4)

Indeed, W s(Zm) is determined, from the integrals in Proposition 3.4 in [8], by

c1e
φ = ca,m1 eφ

a,m
, c2e

−φ =ca,m2 e−φ
a,m
, ca.m1 − ca,m2 + 2Q0 = 0,

1

2
u2 − c1 − c2 + 2Q0φ =− ca,m1 − ca,m2 + 2Q0φ

a,m.

The first three equations give

c1e
φ−φa,m − c2e−φ+φ

a,m
+ 2Q0 = 0.

Thus,

φa,m = φ− ln

√
Q2

0 + c1c2 −Q0

c1
.

Hence,

1

2
u2 − c1 − c2 + 2Q0φ = −2

√
Q2

0 + c1c2 + 2Q0φ− 2Q0 ln

√
Q2

0 + c1c2 −Q0

c1
,

which verifies the claim.
Note that, a norm vector to W s(Zm) at Pa is

∇F (Pa) = (Fφ, Fu, Fc1 , Fc2 , FJ1 , FJ2 , Fw),

where, from (7.4),

Fφ =FJ1 = FJ2 = Fw = 0, Fu = ua,

Fc1 =− 1 + (Q2
0 + ca1c

a
2)−1/2ca2 −Q0(

√
Q2

0 + ca1c
a
2 +Q0)

−1(Q2
0 + ca1c

a
2)−1/2ca2,

Fc2 =− 1 + (Q2
0 + ca1c

a
2)−1/2ca1 +Q0(

√
Q2

0 + ca1c
a
2 −Q0)

−1(Q2
0 + ca1c

a
2)−1/2ca1.

One has

T1 · ∇F (Pa) =ca2 − ca1 − ca1Fc1 + ca2Fc2

=Q0(
√
Q2

0 + ca1c
a
2 −Q0)

−1(Q2
0 + ca1c

a
2)−1/2ca1c

a
2

+Q0(
√
Q2

0 + ca1c
a
2 +Q0)

−1(Q2
0 + ca1c

a
2)−1/2ca1c

a
2

=2Q0

√
Q2

0 + ca1c
a
2 6= 0.

Thus, T1 6∈W s(Zm), and hence, Wa and W s(Zm) intersect transversally at Pa.
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Let Na,m = Wa∩W s(Zm). Then dimNa,m = 4+6−7 = 3 and dimω(Na,m) = 2.
One has, from Proposition 7.3,

ω(Na,m) = {(φa,m, 0, ca,m1 , ca,m2 , J, a) : |J − J0| < δ} ⊂ Zm, (7.5)

where

φa,m =− ln ν + ln
2eV L

A2
0

+ (φa1 −A0)ν +O(ν2),

ca,m1 =
1

2
A2

0ν +A0A1ν
2 +O(ν3), ca,m2 =

2

ν
+

1

2
A2

0ν +O(ν2).

(7.6)

Step 3. M1
ε along Γrb∪Λr∪Γl1 and Γlb. Let M1

ε be the set that consists of backward
orbits from B1. Similarly, one can apply the procedure in Steps 1 and 2 backward to
M1
ε along Γrb ∪Λr ∪Γl1 and Γlb. If the set α(N b,m) associated to M1

ε is the counterpart
of the set ω(Na,m) associated to M0

ε , then

α(N b,m) = {(φb,m, 0, cb.mk , J, b) : |J − J0| < δ} ⊂ Zm, (7.7)

where, from Proposition 7.3,

φb,m =− ln ν + ln
2eV L

A2
0

+
(
φa1 −A0 +

J20
2

(H(b)−H(a))
)
ν +O(ν2),

cb,m1 =
(1

2
A2

0 − J11(H(b)−H(a))
)
ν +

(
A0A1 −

H(b)−H(a)

2H(a)
(L−A0)A

2
0

)
ν2 +O(ν3),

cb,m2 =
2

ν
+
(1

2
A2

0 − J11(H(b)−H(a))
)
ν +O(ν2).

Step 4. Transversal intersection of M̂a and M̂b on Zm. Recall the sets ω(Na,m)

in (7.5) and α(N b,m) in (7.7). Let M̂a be the collection of forward (limiting slow)
orbits from ω(Na,m) on Zm and let M̂b be the collection of backward (limiting slow)
orbits from α(N b,m) on Zm. To complete the proof, it suffices to show that

Lemma 7.9. The intersection of M̂a and M̂b on Zm is transversal.

Proof. We will show that M̂a and M̂b intersect transversally on Zm ∩ {w = x = b}.
We use (φ, c1, J1, J2) as a coordinate system on Zm ∩ {w = x = b}. To characterize

M̂a ∩
{
w = x = b

}
= {(φ(J1, J2), c1(J1, J2), J1, J2) : |Jk − J0

k | < δ},

we recall from display (35) in [8] that the solution of the limiting slow system with
the initial condition (φa,m, ca,m1 , J1, J2, a) that corresponds to the point

(φa,m, 0, ca,m1 , ca,m2 , J1, J2, a) ∈ ω(Na,m)

is given by

φ(y) =φa,m + (J2 − J1)y, c1(y) = e−(J1+J2)yca,m1 − 2Q0J1
J1 + J2

(
1− e−(J1+J2)y

)
,∫ w

a
h−1(s)ds =

2ca,m1

J1 + J2

(
1− e−(J1+J2)y

)
− 4Q0J1
J1 + J2

(
y − 1

J1 + J2

(
1− e−(J1+J2)y

))
+ 2Q0y.
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At w = b, the quantity y is determined by (J1, J2) from the last equation implicitly
and, in turn, φ and c1 are functions of (J1, J2) defined implicitly by

φ = φa,m + (J2 − J1)y, c1 = e−(J1+J2)yca,m1 − 2Q0J1
J1 + J2

(
1− e−(J1+J2)y

)
,

H(b)−H(a)

2
(J1 + J2) =

(
ca,m1 +

2Q0J1
J1 + J2

)(
1− e−(J1+J2)y

)
+Q0(J2 − J1)y.

(7.8)

Thus, the tangent space to M̂a ∩
{
w = x = b

}
is spanned by the vectors

(∂J1φ, ∂J1c1, 1, 0) and (∂J2φ, ∂J2c1, 0, 1).

It follows from (7.7) that the tangent space to α(N b,m) is spanned by (0,0,1,0) and
(0,0,0,1). Note that Zm

⋂
{w = x = b} is four dimensional. Thus, it suffices to show

that the above four vectors are linearly independent, that is, ∂J1φ∂J2c1 6= ∂J2φ∂J1c1
at J = J0. The latter will be established in the rest of this part.

Take derivative with respect to J1 and J2 in the last equation of (7.8) to get

H(b)−H(a)

2
=

2Q0

J1 + J2

(
1− e−(J1+J2)y

)
− 2Q0J1

(J1 + J2)2

(
1− e−(J1+J2)y

)
+
(
ca,m1 +

2Q0J1
J1 + J2

)(
y + (J1 + J2)∂J1y

)
e−(J1+J2)y

+Q0(J2 − J1)∂J1y −Q0y,

H(b)−H(a)

2
=− 2Q0J1

(J1 + J2)2

(
1− e−(J1+J2)y

)
+
(
ca,m1 +

2Q0J1
J1 + J2

)(
y + (J1 + J2)∂J2y

)
e−(J1+J2)y

+Q0(J2 − J1)∂J2y +Q0y.

(7.9)

Recall, from Propositions 3.1 and 3.3, and display (7.6), that

y =y1ν +O(ν3) =
β − α

2
H(1)ν +O(ν3), ca,m1 =

1

2
A2

0ν +A0A1ν
2 +O(ν3),

J1 =J11ν +O(ν2), J2 = J20 + J21ν +O(ν2).

One has, from (7.9), that

∂J1y =− y21
J20

ν2 +O(ν3) and ∂J2y = O(ν3).
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Taking the derivatives with respect to J1 and J2 in (7.8), one has

∂J1φ =− y + (J2 − J1)∂J1y = −y21ν2 +O(ν3),

∂J1c1 =− (y + (J1 + J2)∂J1y)e−(J1+J2)yca,m1 − 2Q0

J1 + J2

(
1− e−(J1+J2)y

)
+

2Q0J1
(J1 + J2)2

(
1− e−(J1+J2)y

)
− 2Q0J1
J1 + J2

(y + (J1 + J2)∂J1y)e−(J1+J2)y

=− 2y1 +O(ν),

∂J2φ =y + (J2 − J1)∂J2y = O(ν3),

∂J2c1 =− (y + (J1 + J2)∂J2y)e−(J1+J2)yca,m1

+
2Q0J1

(J1 + J2)2

(
1− e−(J1+J2)y

)
− 2Q0J1
J1 + J2

(y + (J1 + J2)∂J2y)e−(J1+J2)y

=2y1 +O(ν).

Therefore, at (φb,m, 0, cb.mk , J0, b) and for ν > 0 small,

∂J1φ∂J2c1 − ∂J2φ∂J1c1 = −2y31ν
2 +O(ν3) 6= 0.

This completes the proof.
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