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Abstract
Ions are crowded in ion channels, and finite ion sizes play essential roles in the study of
ionic flows through membrane channels. Some significant properties of ion channels, such
as selectivity, rely on ion sizes critically. Following the work done in (SIAM J Appl Dyn Syst
12:1613–1648, 2013), we focus on the higher order (in the diameter of the cation), mainly the
second order, contributions from finite ion sizes to ionic flows in terms of both the total flow
rate of charges and the individual fluxes. This is particularly essential because the first-order
terms approach zero when the left boundary concentration is close to the right one for the
same ion species. The interplays between the first-order terms and the second-order terms
are characterized. Furthermore, several critical potentials are identified, which play critical
roles in examining the dynamics of ionic flows. Some can be experimentally estimated. The
analysis could provide deep insights into the future studies of ionic flows through membrane
channels.
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1 Introduction

The study of electrodiffusion is an extremely rich area for multidisciplinary research with
diverse applications from computer science, through engineering to biology. Mathematical
analysis plays unique and important roles in better understanding the mechanics of phenom-
ena arising from life science and discovering new features, assuming that a more or less
explicit solution of the associated mathematical model can be obtained. In this work, we ana-
lyze the qualitative properties of ionic flows through ion channels via a quasi-one-dimensional
steady-state Poisson–Nernst–Planck (PNP) type system.

PNP system is a basicmacroscopicmodel for electrodiffusion of charges through ion chan-
nels ([11,15–18,24,25,28,35,36,59,60,64,65], etc.). Under various reasonable conditions, the
PNP system can be derived as a reduced model frommolecular dynamics ([69]), from Boltz-
mann equations ([3]), and from variational principles ([31,32,34]).

The simplest PNP system is the classical Poisson-Nernst-Planck system, which treats
ions as point-charges, and neglects ion-to-ion interaction. It has been simulated and analyzed
to a great extent (see, e.g., [1,4,5,8–14,20,22,24,25,27,29,30,36–41,45,50–52,56–58,61,66–
68,70–73,75–82]). However, since ions are crowded ([15]) and finite ion sizes perform
fundamental roles in the study of ionic flows.

A lot of structural properties of ion channels, such as selectivity, rely on ion sizes critically.
For example, Na+ (sodium) andK+ (potassium), having the same valence (number of charges
per particle), are mainly distinguished by their ionic sizes. To examine ion size effects on
ionic flows, onemust consider ion-specific components of the electrochemical potential in the
PNP models. A local hard-sphere potentials (derived in [48]) of the excess electrochemical
potential is included in this work to account for ion size effects in the physiology of ion flows.

The PNP type models with ion sizes have been investigated computationally and analyti-
cally for ion channels and have shown great success ([2,6,7,19,23,25,26,31–34,42,44,48,54,
55,74,83], etc.). The existence and uniqueness of minimizers and saddle points of the free-
energy equilibrium formulation with ionic interaction have been mathematically analyzed
too (see, for example, [21,46,47]).

In [48], the authors provided an analytical treatment of a quasi-one-dimensional PNP sys-
tem with two oppositely charged ion species and a local hard-sphere potential of the excess
component in addition to the ideal component. They treated the model as a singularly per-
turbed system and rigorously established the existence and uniqueness results of the boundary
value problem for small ion sizes. Furthermore, treating ion sizes as small parameters, they
derived an approximation of the I–V relation of the form

I(V ) := z1J1(V ) + z2J2(V ) = I0(V ) + dI1(V ) + o(d),

where d is the diameter of the cation, zk is the valence and Jk is the individual flux. Of
particular interest is the leading term I1(V ) that contains finite ion size effects, from which
many interesting results were established and deep insights into dynamics of ionic flows
were provided. Following the work done in [48], the authors of [7] studied the finite ion size
effects on the individual fluxes Jk and the interplays between the total flow rate of charges
(that is, the I–V relations) and the individual fluxes characterized by some critical potentials.

In [48], the authors observed that the first-order term I1(V ) (similarly for the individual
fluxes Jk(V ), k = 1, 2) approaches zero as the left boundary concentration is close enough
to the right one for the same ion species (that is, either L1 → R1 or L2 → R2 for two ion
species case, which is equivalent under electroneutrality conditions z1L1 = −z2L2 := L and
z1R1 = −z2R2 := R). In this work, we study the second-order terms in d , more precisely,
I2(V ) and Jk2(V ), which will be the leading terms that contain finite ion size effects as
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L → R under electroneutrality conditions; the interaction with the first-order terms (the
effect from the combination); and the characterization of ion size effects close to L = R.

The rest of this paper is organized as follows. In Sect. 2, we describe the one-dimensional
PNP model for ion flows, a local model for hard-sphere potentials, and the setup of the
boundary value problem of the singularly perturbed PNP system. In Sect. 3, under regular
perturbation analysis, we focus on the asymptotic dynamics of the limiting PNP systems up to
the second order in the diameter d of the cation. Section 4 deals with the discussion on finite
ion size effects, which consists of three parts. In Sect. 4.1, a number of critical potentials are
identified and their roles in studying finite ion size effects on ionic flows are characterized in
details. In Sect. 4.2, we discuss the ion size effects from the combination of first-order and
second-order terms. In Sect. 4.3, our interest lies in the case studies of ion size effects near
L = R. Some remarks are provided in Sect. 5.

2 Problem Setup

2.1 A One-Dimensional PNP Type System

Considering that the ion channels have narrow cross-sections relative to their lengths, 3-D
PNP type models can be effectively viewed as one-dimensional models that are normalized
over the interval [0, 1], where the interior and the exterior of the channel are joined. A natural
one-dimensional (time-evolution) PNP type model for ionic flows of n ion species is (see
[53,58])

1

h(x)

∂

∂x

(
εr (x)ε0h(x)

∂�

∂x

)
= −e

( n∑
j=1

z j c j + Q(x)

)
,

∂ci

∂t
+ ∂Ji

∂x
= 0, −Ji = 1

kB T
Di (x)h(x)ci

∂μi

∂x
, i = 1, 2, . . . , n,

(2.1)

where e is the elementary charge, kB is the Boltzmann constant, T is the absolute temperature;
� is the electric potential, Q(x) is the permanent charge of the channel, εr (x) is the relative
dielectric coefficient, ε0 is the vacuum permittivity; h(x) is the area of the cross-section of
the channel over the point x ∈ [0, 1]; for the i th ion species, ci is the concentration, zi is the
valence, μi is the electrochemical potential, Ji is the flux density, and Di (x) is the diffusion
coefficient.

The boundary conditions are, for i = 1, 2, . . . , n,

�(t, 0) = V , ci (t, 0) = Li > 0; �(t, 1) = 0, ci (t, 1) = Ri > 0. (2.2)

For ion channels, an important characteristic is the so-called I–V relation (current–voltage
relation). For a solution of the steady-state boundary value problem of (2.1) and (2.2), the
rate of flow of charge through a cross-section or current I is

I =
n∑

j=1

z jJ j . (2.3)
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2.2 Excess Potential and a Local Hard Sphere Model

The electrochemical potential μi (x) for the i th ion species consists of the ideal component
μid

i (x), the excess component μex
i (x) and the concentration-independent component μ0

i (x)

(e.g. a hard-well potential):

μi (x) = μ0
i (x) + μid

i (x) + μex
i (x)

where

μid
i (x) = zi e�(x) + kB T ln

ci (x)

c0
(2.4)

with some characteristic number density c0. The classical PNP system only uses the ideal
componentμid

i (x). This component reflects the collision between ion particles and the water
molecules. It has been accepted that the classical PNP system is a reasonable model in, for
example, the dilute case under which the ion particles can be treated as point particles and
the ion-to-ion interaction can be more or less ignored. The excess chemical potential μex

i (x)

accounts for the finite size effect of charges (see, e.g., [62,63]).
In this work, we take the following local hard-sphere model for μex

i (x)

1

kB T
μL H S

i (x) = − ln
(
1 −

n∑
j=1

d j c j (x)
)

+ di
∑n

j=1 c j (x)

1 − ∑n
j=1 d j c j (x)

, (2.5)

where d j is the diameter of the j th ion species. Note that the factor di in the second term of
(2.5) makes the model ion-specific.

2.3 The Steady-State Boundary Value Problem and Assumptions

Themain goal of this paper is to examine the qualitative effect of ion sizes via the steady-state
boundary value problem of (2.1) and (2.2) with the local hard-sphere (LHS) model (2.5) for
the excess potential. We will discuss the steady-state boundary value problem in Sect. 3.
In Section 4, we will obtain approximations for (2.3) to study ion size effects on the I–V
relation.

For definiteness, we will take the following settings:

(A1). We consider two ion species (n = 2) with z1 > 0 and z2 < 0.
(A2). The permanent charge is set to be zero: Q(x) = 0.
(A3). For the electrochemical potential μi , in addition to the ideal component μid

i , we also
include the local hard-sphere potential μL H S

i in (2.5).
(A4). The relative dielectric coefficient and the diffusion coefficient are constants, that is,

εr (x) = εr and Di (x) = Di .

In the sequel, we will assume (A1)–(A4). Under the assumptions (A1)–(A4), the steady-
state system of (2.1) is

1

h(x)

d

dx

(
εr (x)ε0h(x)

d�

dx

)
= −e (z1c1 + z2c2) ,

dJi

dx
= 0, −Ji = 1

kB T
Di (x)h(x)ci

dμi

dx
, i = 1, 2.

(2.6)
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Upon introducing the following dimensionless re-scaling

φ = e

kB T
�, V̄ = e

kB T
V , ε2 = εrε0kB T

e2
, Ji = Ji

Di
,

the boundary value problem (2.6) and (2.2) becomes

ε2

h(x)

d

dx

(
h(x)

d

dx
φ

)
= −z1c1 − z2c2,

d J1
dx

= d J2
dx

= 0,

h(x)
dc1
dx

+ z1h(x)c1
dφ

dx
+ h(x)c1

kB T

d

dx
μL H S
1 (x) = −J1,

h(x)
dc2
dx

+ z2h(x)c2
dφ

dx
+ h(x)c2

kB T

d

dx
μL H S
2 (x) = −J2,

(2.7)

with the boundary conditions, for i = 1, 2,

φ(0) = V̄ , ci (0) = Li > 0; φ(1) = 0, ci (1) = Ri > 0. (2.8)

Substituting (2.5) into system (2.7), and after careful calculation, we obtain

ε2

h(x)

d

dx

(
h(x)

d

dx
φ

)
= −z1c1 − z2c2,

d J1
dx

= d J2
dx

= 0,

dc1
dx

= − f1(c1, c2; d1, d2)
dφ

dx
− 1

h(x)
g1(c1, c2, J1, J2; d1, d2),

dc2
dx

= f2(c1, c2; d1, d2)
dφ

dx
− 1

h(x)
g2(c1, c2, J1, J2; d1, d2)

(2.9)

where fk = fk(c1, c2; d1, d2) and gk = gk(c1, c2, J1, j2; d1, d2) for k = 1, 2 are

f1 =z1c1 − (d1 + d2 − d2
1c1 − d2

2c2)(z1c1 + z2c2)c1 − z1(d1 − d2)c
2
1,

f2 = − z2c2 + (d1 + d2 − d2
1c1 − d2

2c2)(z1c1 + z2c2)c2 + z2(d2 − d1)c
2
2,

g1 = (
(1 − d1c1)

2 + d2
2c1c2

)
J1 − c1(d1 + d2 − d2

1c1 − d2
2c2)J2,

g2 = (
(1 − d2c2)

2 + d2
1c1c2

)
J2 − c2(d1 + d2 − d2

1c1 − d2
2c2)J1.

(2.10)

Recall the boundary conditions are

φ(0) = V̄ , ci (0) = Li > 0; φ(1) = 0, ci (1) = Ri > 0. (2.11)

Denote the derivative with respect to x by overdot and introduce u = εφ̇ and τ = x .
System (2.9) becomes

εφ̇ = u, εu̇ = −z1c1 − z2c2 − ε
hτ (τ )

h(τ )
u,

εċ1 = − f1(c1, c2; d1, d2)u − ε

h(τ )
g1(c1, c2, J1, J2; d1, d2),

εċ2 = f2(c1, c2; d1, d2)u − ε

h(τ )
g2(c1, c2, J1, J2; d1, d2)

J̇1 = J̇2 = 0, τ̇ = 1.

(2.12)

System (2.12) will be treated as a singularly perturbed system with ε as the singular
parameter. Its phase space is R7 with state variables (φ, u, c1, c2, J1, J2, τ ).
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For ε > 0, the rescaling x = εξ of the independent variable x gives rise to

φ′ = u, u′ = −z1c1 − z2c2 − ε
hτ (τ )

h(τ )
u,

c′
1 = − f1(c1, c2; d1, d2)u − ε

h(τ )
g1(c1, c2, J1, J2; d1, d2),

c′
2 = f2(c1, c2; d1, d2)u − ε

h(τ )
g2(c1, c2, J1, J2; d1, d2),

J ′
1 =J ′

2 = 0, τ ′ = ε,

(2.13)

where prime denotes the derivative with respect to the variable ξ .
Let BL and BR be the subsets of the phase space R7 defined by

BL = {(V̄ , u, L1, L2, J1, J2, 0) ∈ R
7 : arbitrary u, J1, J2},

BR ={(0, u, R1, R2, J1, J2, 1) ∈ R
7 : arbitrary u, J1, J2},

(2.14)

where V̄ , L1, L2, R1 and R2 are given in (2.11). Then the original boundary value problem
is equivalent to a connecting problem: finding a solution of (2.12) or (2.13) from BL to BR

(see, for example, [43]).

3 Asymptotic Dynamics of the Limiting PNP Systems

Our main focus in this section is to derive and study the second order system in d for both
the limiting fast PNP system and the limiting slow PNP system. Some previous results from
[48] will be briefly recalled, which will be used later in our discussion.

3.1 Limiting Fast Dynamics and Boundary Layers for the Second Order

By setting ε = 0 in (2.13), we get the limiting fast system

φ′ = u, u′ = −z1c1 − z2c2,

c′
1 = − f1(c1, c2; d1, d2)u, c′

2 = f2(c1, c2; d1, d2)u,

J ′
1 =J ′

2 = 0, τ ′ = 0.

(3.1)

Recall that d1 and d2 are the diameters of the two ion species. For small d1 > 0 and
d2 > 0, we treat (3.1) as a regular perturbation of that with d1 = d2 = 0. While d1 and d2
are small, their ratio is of order O(1). We thus set

d1 = d and d2 = λd (3.2)

and look for solutions 	(ξ ; d) = (
φ(ξ ; d), u(ξ ; d), c1(ξ ; d), c2(ξ ; d), J1(d), J2(d), τ

)
of

system (3.1) of the form

φ(ξ ; d) = φ0(ξ) + φ1(ξ)d + φ2(ξ)d2 + o(d2),

u(ξ ; d) =u0(ξ) + u1(ξ)d + u2(ξ)d2 + o(d2),

ck(ξ ; d) =ck0(ξ) + ck1(ξ)d + ck2(ξ)d2 + o(d2),

Jk(d) =Jk0 + Jk1d + Jk2d2 + o(d2).

(3.3)

Substituting (3.3) into system (3.1), we obtain
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(i) zeroth order limiting fast system in d

φ′
0 = u0, u′

0 = −z1c10 − z2c20, c′
10 = −z1c10u0, c′

20 = −z2c20u0,

J ′
10 =J ′

20 = 0, τ ′ = 0,
(3.4)

(ii) first order limiting fast system in d ,

φ′
1 = u1, u′

1 = −z1c11 − z2c21,

c′
11 = − z1u0c11 − z1c10u1 + u0

(
(λ + 1)z2c10c20 + 2z1c210

)
,

c′
21 = − z2u0c21 − z2c20u1 + u0

(
(λ + 1)z1c10c20 + 2λz2c220

)
,

J ′
11 =J ′

21 = 0, τ ′ = 0,

(3.5)

(iii) second order limiting fast system in d

φ′
2 = u2, u′

2 = −z1c12 − z2c22,

c′
12 = − z1c10u2 − z1c11u1 + (

2z1c10 + (1 + λ)z2c20
)
c10u1 − z1c12u0

+ (
2z1c10 + (1 + λ)z2c20

)
c11u0 + (

2z1c11 + (1 + λ)z2c21
)
c10u0

− (c10 + λ2c20)(z1c10 + z2c20)c10u0,

c′
22 = − z2c20u2 − z2c21u1 + (

2λz2c20 + (1 + λ)z1c10
)
c20u1 − z2c22u0

+ (
2λz2c20 + (1 + λ)z1c10

)
c21u0 + (

2λz2c21 + (1 + λ)z1c11
)
c20u0

− (c10 + λ2c20)(z1c10 + z2c20)c20u0,

J ′
12 =J ′

22 = 0, τ ′ = 0,

(3.6)

The zeroth order system and the first order system have been studied in [48], and we will
not repeat them here. Instead, some results that will be used in our discussion will be briefly
recalled in Proposition 3.2. To get started, we have the following result for our second order
system (3.6), which is crucial to characterize the boundary layers and landing points.

Lemma 3.1 The second order system (3.6) has a complete set of first integrals as follows:

G1 = c12
c10

− c211
2c210

+ z1φ2 + (c11 + λc21) + u0u1 + 1

2
(c10 + λc20)

2,

G2 =c22
c20

− c221
2c220

+ z2φ2 + (c11 + λc21) + λu0u1 + 1

2
(c10 + λc20)

2,

G3 =c12 + c22 − u0u2 − 1

2
u2
1 + (c10 + c20)(c11 + λc21)

+ (c11 + c21)(c10 + λc20) + (c10 + c20)(c10 + λc20)
2,

G4 =J12, G5 = J22, G6 = τ.

(3.7)

Following the results for the zeroth and first order systems from [48], together with Lemma
3.1, one has

Proposition 3.2 Assume that d ≥ 0 is small. One has

(i) The stable manifold W s(Z) intersects BL transversally at points
(
V , ul

0+ul
1d +ul

2d2+
o(d2), Lk, Jk(d), 0

)
for k = 1, 2, and the ω−limit set of N L = M L ∩ W s(Z) is

ω
(
N L) =

{(
φL
0 + φL

1 d + φL
2 d2 + o(d2), 0, cL

k0 + cL
k1d + cL

k2d2 + o(d2), Jk(d), 0
)}

,
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where Jk(d) = Jk0 + Jk1d + Jk2d2 + o(d2), k = 1, 2, can be arbitrary, the zeroth
order and first order results recalled from [48]

φL
0 = V − 1

z1 − z2
ln

−z2L2

z1L1
, z1cL

10 = −z2cL
20 = (

z1L1
) −z2

z1−z2
( − z2L2

) z1
z1−z2 ,

ul
0 = sgn(z1l1 + z2l2)

√
2
(

L1 + L2 + z1 − z2
z1z2

(
z1L1

) −z2
z1−z2

( − z2L2
) z1

z1−z2

)
,

φL
1 = 1 − λ

z1 − z2

(
L1 + L2 − cL

10 − cL
20

)
,

z1cL
11 = −z2cL

21 = z1cL
10

(
L1 + λl2 + λz1 − z2

z1 − z2
(L1 + L2) + 2(λz1 − z2)

z2
cL
10

)
,

ul
1 = 1

ul
0

(
(L1 + L2)(L1 + λL2) − (cL

10 + cL
20)(c

L
10 + λcL

20) − cL
11 − cL

21

)
.

and the result for the second order limiting fast system

φL
2 = 1 − λ

z1 − z2
(L1 + L2)(L1 + λL2) + 1 − λ

z2

(
cL
11 − λz1 − z2

z2
(cL

10)
2
)
,

z1cL
12 = −z2cL

22 = z1cL
10

(
1

2
ω2(L1, L2) + 4(λz1 − z2)

z2
cL
10ω(L1, L2)

+ (
L1 + λL2

)
ω(L1, L2) + 9(λz1 − z2)2

2z22

(
cL
10

)2 − 1

2

(
L1 + λL2

)2)
,

ul
2 = (L1 + L2)(L1 + λL2)

2 − 1
2 (u

l
1)

2 − cL
12 − cL

22 − (cL
10 + cL

20)(c
L
11 + λcL

21)

ul
0

− (cL
11 + cL

21)(c
L
10 + λcL

20) + (cL
10 + cL

20)(c
L
10 + λcL

20)
2

ul
0

,

where

w(α, β) = α + λβ + λz1 − z2
z1 − z2

(α + β). (3.8)

(ii) The unstable manifold W u(Z) intersects BR transversally at points
(
0, ur

0 + ur
1d +

ur
2d2 + o(d2), R1, R2, J1(d), J2(d), 1

)
, and the α−limit set of Nr = Mr ∩ W u(Z) is

α
(
N R) =

{(
φR
0 + φR

1 d + φr
2d2 + o(d2), 0, cR

k0 + cR
k1d + cR

k2d2 + o(d2), Jk(d), 1
)}

,

where Jk(d) = Jk0 + Jk1d + Jk2d2 +o(d2), k = 1, 2, can be arbitrary, and the zeroth
order and first order results recalled from [48]

φR
0 = − 1

z1 − z2
ln

−z2r2
z1r1

, z1cR
10 = −z2cR

20 = (
z1R1

) −z2
z1−z2

( − z2R2
) z1

z1−z2

ur
0 = sgn(z1R1 + z2R2)

√
2
(

R1 + R2 + z1 − z2
z1z2

(
z1R1

) −z2
z1−z2

( − z2R2
) z1

z1−z2

)

φR
1 = 1 − λ

z1 − z2

(
R1 + R2 − cR

10 − cR
20

)
,
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z1cR
11 = −z2cR

21 = z1cR
10

(
R1 + λR2 + λz1 − z2

z1 − z2
(R1 + R2) + 2(λz1 − z2)

z2
cR
10

)
,

ur
1 = (R1 + R2)(R1 + λR2) − (cR

10 + cR
20)(c

R
10 + λcR

20) − cR
11 − cR

21

ur
0

,

and the result for the second order limiting fast system

φR
2 = 1 − λ

z1 − z2
(R1 + R2)(R1 + λR2) + 1 − λ

z2

(
cR
11 − λz1 − z2

z2
(cR

10)
2
)
,

z1cR
12 = −z2cR

22 = z1cR
10

(
1

2
ω2(R1, R2) + 4(λz1 − z2)

z2
cR
10ω(R1, R2)

+ (
R1 + λR2

)
ω(R1, R2) + 9(λz1 − z2)2

2z22

(
cR
10

)2 − 1

2

(
R1 + λR2

)2)
,

ur
2 = (R1 + R2)(R1 + λR2)

2 − 1
2 (u

r
1)

2 − cR
12 − cR

22 − (cR
10 + cR

20)(c
R
11 + λcR

21)

ur
0

− (cR
11 + cR

21)(c
R
10 + λcR

20) + (cR
10 + cR

20)(c
R
10 + λcR

20)
2

ur
0

.

Recall that we are interested in the solutions 	0(ξ ; d) ⊂ NL = ML ∩ W s(Z) with
	0(0; d) ∈ BL and 	1(ξ ; d) ⊂ NR = MR ∩ W u(Z) with 	1(0; d) ∈ BR .

3.2 Limiting Slow Dynamics and Regular Layer for the Second Order

Next we construct the regular layer on Z that connects ω(NL) and α(NR). After suitable
treatment (see [48] for details), the limiting slow system reads

φ̇ = − z1g1
(
c1,− z1

z2
c1, J1, J2; d, λd

) + z2g2
(
c1,− z1

z2
c1, J1, J2; d, λd

)
z1(z1 − z2)h(τ )c1

,

ċ1 = − f1
(
c1,− z1

z2
c1; d, λd

)
p − 1

h(τ )
g1

(
c1,− z1

z2
c1, J1, J2; d, λd

)
,

J̇1 = J̇2 = 0, τ̇ = 1.

(3.9)

As for the layer problem, we look for solutions of (3.9) of the form

φ(x) = φ0(x) + φ1(x)d + +φ2(x)d2 + o(d2),

c1(x) = c10(x) + c11(x)d + c12(x)d2 + o(d2),

Jk = Jk0 + Jk1d + Jk2d2 + o(d2)

(3.10)

to connect ω(NL) and α(NR) given in Proposition 3.2; in particular, for j = 0, 1, 2,(
φ j (0), c1 j (0)

) = (
φL

j , cL
1 j

)
and

(
φ j (1), c1 j (1)

) = (
φR

j , cR
1 j

)
. To get started, we introduce

the following notations for simplicity.

T m
k =J1k + J2k, T c

k = z1 J1k + z2 J2k, k = J1k + λJ2k, k = 0, 1, 2. (3.11)

From system (3.9) and the definitions of f j ’s and g j ’s in (2.10), we have
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(i) the zeroth order limiting slow system in d

φ̇0 = − T c
0

z1(z1 − z2)h(τ )c10
, ċ10 = z2T m

0

(z1 − z2)h(τ )
,

J̇10 = J̇20 = 0, τ̇ = 1,
(3.12)

(ii) the first order limiting slow system in d

φ̇1 = T c
0 c11

z1(z1 − z2)h(τ )c210
+ z1(1 − λ)T m

0 c10 − T c
1

z1(z1 − z2)h(τ )c10
,

ċ11 =2(λz1 − z2)T m
0 c10 + z2T m

1

(z1 − z2)h(τ )
, J̇11 = J̇21 = 0, τ̇ = 1.

(3.13)

(iii) the second order limiting slow system in d

φ̇2 = − T c
2

z1(z1 − z2)h(τ )c10
+ T c

1 c11
z1(z1 − z2)h(τ )c210

− (λ − 1)T m
1

(z1 − z2)h(τ )

− T c
0 (c211 − c10c12)

z1(z1 − z2)h(τ )c310
,

ċ12 = z2T m
2

(z1 − z2)h(τ )
+ 2

(
λz1 − z2

)
T m
1

(z1 − z2)h(τ )
c10 + 2

(
λz1 − z2

)
T m
0

(z1 − z2)h(τ )
c11

+ (λz1 − z2)2T m
0

z2(z1 − z2)h(τ )
c210,

J̇12 = J̇22 = 0, τ̇ = 1,

(3.14)

For convenience, we denote

H(x) =
∫ x

0
h−1(s)ds. (3.15)

Systems (3.12) and (3.13) have been analyzed in [48] under the condition that there is
no permanent charge in the channel, and explicit solutions were obtained, from which the
zeroth and first-order (in d) individual fluxes were derived. This is crucial for our study in
this work, and we state it as follows:

Lemma 3.3 For the zeroth order and the first order individual fluxes (in d), one has

J10 =cL
10 − cR

10

H(1)

(
1 + z1

(
φL
0 − φR

0

)
ln cL

10 − ln cR
10

)
, J20 = − z1(cL

10 − cR
10)

z2H(1)

(
1 + z2

(
φL
0 − φR

0

)
ln cL

10 − ln cR
10

)
,

J11 = M

z1H(1)
+ N

H(1)
, J21 = − M

z2H(1)
− N

H(1)
,
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where

M =z1cL
10w(L1, L2) − z1cR

10w(R1, R2) + z1(λz1 − z2)

z2

(
(cL

10)
2 − (cR

10)
2
)

,

N = z1(cL
10 − cR

10)

ln cL
10 − ln cR

10

(φL
1 − φR

1 ) − (1 − λ)z1
z2

(cL
10 − cR

10)
2

ln cL
10 − ln cR

10

+ φL
0 − φR

0

ln cL
10 − ln cR

10

M

− z1(cL
10 − cR

10)(w(L1, L2) − w(R1, R2))

(ln cL
10 − ln cR

10)
2

(φL
0 − φR

0 ),

P(x) =λz1 − z2
z2

(cL
10 − cR

10)H(x)

(ln cL
10 − ln cR

10)H(1)

+ cL
10 − c10(x)

ln cL
10 − ln cR

10

(
w(L1, L2)

c10(x)
+ λz1 − z2

z2

cL
10

c10(x)

)

− H(x)

z1(ln cL
10 − ln cR

10)c10(x)H(1)
M + ln cL

10 − ln c10(x)

z1(ln cL
10 − ln cR

10)(c
L
10 − cR

10)
M,

(3.16)

where ω is defined in (3.8).

For the second order system (3.14), one has

Lemma 3.4 There is a unique solution (φ2(x), c12(x), J12, J22, τ (x)) of (3.14) such that
(φ2(0), c12(0), τ (0)) = (φL

2 , cL
12, 0) and (φ2(1), c12(1), τ (1)) = (φR

2 , cR
12, 1), where φL

2 ,
φR
2 , cL

12, and cR
12 are given in Proposition 3.2. It is given by

φ2(x) = φL
2 +

(
2(λz1 − z2)T c

1

z1z2(z1 − z2)
− (λ − 1)T m

1

z1 − z2

)
H(x)

+ T m
0 (T c

0 T m
2 − T c

2 T m
0 ) + T m

1 (T c
1 T m

0 − T c
0 T m

1 )

z1z2(T m
0 )3

(
ln c10(x) − ln cL

10

)

+ T c
0 T m

1 − T c
1 T m

0

z1z2(T m
0 )2

(
c11(x)

c10(x)
− cL

11

cL
10

)
+ T c

0

2z1z2T m
0

(
c211(x)

c210(x)
− (cL

11)
2

(cL
10)

2

)

− T c
0

z1z2T m
0

(
c12(x)

c10(x)
− cL

12

cL
10

− (λz1 − z2)2

2z22

(
c210(x) − (cL

10)
2)),

c12(x) = cL
12 + z2T m

2

z1 − z2
H(x) + 2(λz1 − z2)

z2

(
c11(x)c10(x) − cL

11cL
10

)

− (λz1 − z2)2

z22

(
c310(x) − (cL

10)
3).

(3.17)

In particular, one has

J12 = z1z2T m
0

(z1 − z2)(ln cR
10 − ln cL

10)

{
φL
2 − φR

2 +
(
2(λz1 − z2)T c

1

z1z2(z1 − z2)
− (λ − 1)T m

1

z1 − z2

)
H(1)

+ T c
0 T m

1 − T c
1 T m

0

z1z2(T m
0 )2

(
cR
11

cR
10

− cL
11

cL
10

)
+ T c

0

2z1z2T m
0

(
(cR

11)
2

(cR
10)

2
− (cL

11)
2

(cL
10)

2

)
+ J10

T m
0

T m
2

− T c
0

z1z2T m
0

(
cR
12

cR
10

− cL
12

cL
10

− (λz1 − z2)2
(
(cR

10)
2 − (cL

10)
2
)

2z22

)}
− T m

1 (T c
0 T m

1 − T c
1 T m

0 )

(z1 − z2)(T m
0 )2

,

J22 = − z1z2T m
0

(z1 − z2)(ln cR
10 − ln cL

10)

{
φL
2 − φR

2 +
(
2(λz1 − z2)T c

1

z1z2(z1 − z2)
− (λ − 1)T m

1

z1 − z2

)
H(1)
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+ T c
0 T m

1 − T c
1 T m

0

z1z2(T m
0 )2

(
cR
11

cR
10

− cL
11

cL
10

)
+ T c

0

2z1z2T m
0

(
(cR

11)
2

(cR
10)

2
− (cL

11)
2

(cL
10)

2

)
+ J20

T m
0

T m
2

− T c
0

z1z2T m
0

(
cR
12

cR
10

− cL
12

cL
10

− (λz1 − z2)2
(
(cR

10)
2 − (cL

10)
2
)

2z22

)}
+ T m

1 (T c
0 T m

1 − T c
1 T m

0 )

(z1 − z2)(T m
0 )2

,

where

T m
2 = z1 − z2

z2H(1)

(
cR
12 − cL

12 − 2(λz1 − z2)

z2

(
cR
11cR

10 − cL
11cL

10

) + (λz1 − z2)2

z22

(
(cR

10)
3 − (cL

10)
3)),

T c
2 = T c

0

T m
0

T m
2 + z1z2T m

0

ln cR
10 − ln cL

10

{
φL
2 − φR

2 +
(
2(λz1 − z2)T c

1

z1z2(z1 − z2)
− (λ − 1)T m

1

z1 − z2

)
H(1)

+ T c
0 T m

1 − T c
1 T m

0

z1z2(T m
0 )2

(
cR
11

cR
10

− cL
11

cL
10

)
+ T c

0

2z1z2T m
0

(
(cR

11)
2

(cR
10)

2
− (cL

11)
2

(cL
10)

2

)

− T c
0

z1z2T m
0

(
cR
12

cR
10

− cL
12

cL
10

− (λz1 − z2)2
(
(cR

10)
2 − (cL

10)
2
)

2z22

)}
− T m

1 (T c
0 T m

1 − T c
1 T m

0 )

(T m
0 )2

.

Proof Taking the integral from 0 to x for the first two equations in (3.14), respectively,
together with c12(0) = cL

12 and φ2(0) = φL
2 , one has

φ2(x) = φL
2 − T c

2

z1(z1 − z2)

∫ x

0

1

h(s)c10(s)
ds + T c

1

z1(z1 − z2)

∫ x

0

c11(s)

h(s)c210(s)
ds

− T c
0

z1(z1 − z2)

( ∫ x

0

c211(s)

h(s)c310(s)
ds −

∫ x

0

c12(s)

h(s)c210(s)
ds

)

− (λ − 1)T m
1

(z1 − z2)
H(x),

c12(x) = cL
12 + z2T m

2

(z1 − z2)
H(x) + 2

(
λz1 − z2

)
T m
1

(z1 − z2)

∫ x

0

c10(s)

h(s)
ds

+ 2
(
λz1 − z2

)
T m
0

(z1 − z2)

∫ x

0

c11(s)

h(s)
ds + (λz1 − z2)2T m

0

z2(z1 − z2)

∫ x

0

c210(s)

h(s)
ds,

(3.18)

where∫ x

0

1

h(s)c10(s)
ds = z1 − z2

z2T m
0

∫ x

0

ċ10
c10(s)

ds = z1 − z2
z2T m

0

(
ln c10(x) − ln cL

10

)
,

∫ x

0

c11(s)

h(s)c210(s)
ds = z1 − z2

z2T m
0

∫ x

0

c11(s)ċ10(s)

c210(s)
ds

= − z1 − z2
z2T m

0

(
c11(x)

c10(x)
− cL

11

cL
10

− 2(z1λ − z2)T m
0

z1 − z2
H(x) − T m

1

T m
0

(
ln c10(x) − ln cL

10

))
,

∫ x

0

c211(s)

h(s)c310(s)
ds = z1 − z2

z2T m
0

∫ x

0

c211(s)ċ10(s)

c310(s)
ds

= − z1 − z2
2

z2T m
0

(
c211(x)

c210(x)
− (cL

11)
2

(cL
10)

2
− 2z2T m

1

z1 − z2

∫ x

0

c11(s)

c210(s)h(s)
ds

− 4(z1λ − z2)T m
0

z1 − z2

∫ x

0

c11(s)

c10(s)h(s)
ds

)
,
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∫ x

0

c12(s)

c210(s)h(s)
ds = − z1 − z2

z2T m
0

[
c12(x)

c10(x)
− cL

12

cL
10

− z2T m
2

z1 − z2

∫ x

0

1

c10(s)h(s)
ds

− 2(z1λ − z2)T m
1

z1 − z2
H(x) − 2(z1λ − z2)T m

0

z1 − z2

∫ x

0

c11(s)

c10(s)h(s)
ds

− (z1λ − z2)2T m
0

z2(z1 − z2)

∫ x

0

c10(s)

h(s)
ds

]
,

∫ x

0

c11(s)

h(s)
ds = z1 − z2

z2T m
0

∫ x

0
c11(s)dc10(s)

= z1 − z2
z2T m

0

(
c11(x)c10(x) − cL

11cL
10 − 2(z1λ − z2)T m

0

z1 − z2

∫ x

0

c210(s)

h(s)
ds

− z2T m
1

z1 − z2

∫ x

0

c10(s)

h(s)
ds

)
,

∫ x

0

c10(s)

h(s)
ds = z1 − z2

z2T m
0

∫ x

0
c10(s)ċ10(s)ds = z1 − z2

2z2T m
0

(
c210(x) − (cL

10)
2),

∫ x

0

c210(s)

h(s)
ds = z1 − z2

z2T m
0

∫ x

0
c210(s)ċ10(s)ds = z1 − z2

3z2T m
0

(
c310(x) − (cL

10)
3),

where∫ x

0

c11(s)

c10(s)h(s)
ds = z1 − z2

z2T m
0

[
c11(x) ln c10(x) − cL

11 ln cL
10

− z1λ − z2
z2

(
c210(x) ln c10(x) − (cL

10)
2 ln cL

10 − c210(x) − (cL
10)

2

2

)

− T m
1

T m
0

(
c10(x) ln c10(x) − cL

10 ln cL
10 − c10(x) + cL

10

)]
.

Substituting these integrals into (3.18) and regrouping some terms, one obtain (3.17). Evalu-
ating the φ2 and c12 equations in (3.17) at x = 1, together with φ2(1) = φR

2 and c12(1) = cR
12,

one can uniquely solve the two resulting algebraic equations in J12 and J22, and obtain the
expressions for them. This completes the proof. �	

4 Finite Ion Size Effects on Ionic Flows

In this section,we examine the finite ion size effect on the I–V relationsI = z1D1 J1+z2D2 J2
and the individual fluxesJk = Dk Jk, k = 1, 2 based on the explicit approximations obtained
from the solutions to the limiting PNP systems. Of particular interest is the ion size effects
from the higher order terms, more precisely, the second order terms I2 = z1D1 J12+z2D2 J22
and Jk2 = Dk Jk2; the interplay with the first order terms (the effect from the combination);
and the characterization of ion size effects close to L = R.

For our following discussions, we assume the electroneutrality boundary conditions

z1L1 = −z2L2 = L, z1R1 = −z2R2 = R. (4.1)

Corollary 4.1 Under electroneutrality boundary conditions (4.1), one has

φL
0 = V̄ , z1cL

10 = −z2cL
20 = L; φR

0 = 0, z1cR
10 = −z2cR

20 = R,

φL
1 = cL

11 = cL
21 = φR

1 = cR
11 = cR

21 = 0 and φL
2 = cL

12 = cL
22 = φR

2 = cR
12 = cR

22 = 0.
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In particular, up to O(d2), there is no boundary layer at x = 0 and x = 1.

Note that V̄ = e
kB T V . From Lemmas 3.3 and 3.4, and Corollary 4.1, we have

Corollary 4.2 Assume L 
= R. Under electroneutrality conditions (4.1), one has

J10 = L − R

z1H(1)

(
1 + z1

e
kB T V

ln L − ln R

)
, J20 = − L − R

z2H(1)

(
1 + z2

e
kB T V

ln L − ln R

)
;

J11 = 2(λz1 − z2)

z1z2H(1)
f0(L, R) f1(L, R)

e

kB T
V + (λ − 1)(L − R)

z1z2H(1)
f2(λ; L, R),

J21 = −2(λz1 − z2)

z1z2H(1)
f0(L, R) f1(L, R)

e

kB T
V − (λ − 1)(L − R)

z1z2H(1)
f3(λ; L, R),

J12 = − (λz1 − z2)2 f0(L, R)

z21z22H(1)
f4(L, R)

e

kB T
V + (λz1 − z2)(L − R)

z31z22H(1)
f5(λ; L, R),

J22 = (λz1 − z2)2 f0(L, R)

z21z22H(1)
f4(L, R)

e

kB T
V − (λz1 − z2)(L − R)

z21z32H(1)
f6(λ; L, R),

where

f0(L, R) = L − R

ln L − ln R
, f1(L, R) = f0(L, R) − L + R

2
,

f2(λ; L, R) = f0(L, R) − z1λ − z2
z1(λ − 1)

(L + R),

f3(λ; L, R) = f0(L, R) − z1λ − z2
z2(λ − 1)

(L + R),

f4(L, R) = 4 f 21 (L, R) + L + R

2
f0(L, R) + L R,

f5(λ; L, R) = (λz1 − z2)(L2 + L R + R2) − 2z1(λ − 1) f 20 (L, R),

f6(λ; L, R) = (λz1 − z2)(L2 + L R + R2) − 2z2(λ − 1) f 20 (L, R).

In particular,

I0(V ; 0) = z1D1 J10(V ; 0) + z2D2 J20(V ; 0)
= (z1D1 − z2D2) f0(L, R)

H(1)

e

kB T
V + (D1 − D2)(L − R)

H(1)
,

I1(V ; λ, 0) = z1D1 J11(V ; λ, 0) + z2D2 J21(V ; λ, 0)

= 2
(λz1 − z2)(z1D1 − z2D2)

z1z2H(1)
f0(L, R) f1(L, R)

e

kB T
V

+ (λ − 1)(z1D1 − z2D2)(L − R)

z1z2H(1)
f7(λ; L, R),

I2(V ; λ, 0) = z1D1 J12(V ; λ, 0) + z2D2 J22(V ; λ, 0)

= − (z1D1 − z2D2)(λz1 − z2)2

z21z22H(1)
f0(L, R) f4(L, R)

e

kB T
V

− 2(λ − 1)(z1λ − z2)(z1D1 − z2D2)(L − R)

z21z22H(1)
f8(λ; L, R),

(4.2)
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where

f7(λ; L, R) = f0(L, R) + (z1λ − z2)(D2 − D1)

(λ − 1)(z1D1 − z2D2)
(L + R),

f8(λ; L, R) = f 20 (L, R) + (z1λ − z2)(D2 − D1)

2(λ − 1)(z1D1 − z2D2)
(L2 + L R + R2).

4.1 Critical Potentials and Their Role Descriptions

In this section, our main concern is identifying the critical potentials and the roles they play
in the study of finite ion size effects on ionic flows.

Definition 4.3 We define nine potentials V0, V10, V20, V F
c , V S

c , V F
1c , V S

1c, V F
2c, and V S

2c by

I0(V0; 0) = 0, I1(V F
c ; λ, 0) = 0, I2(V S

c ; λ, 0) = 0, J10(V10; 0) = 0, J11(V F
1c; λ, 0) = 0,

J12(V S
1c; λ, 0) = 0, J20(V20; 0) = 0, J21(V F

2c; λ, 0) = 0, J22(V S
2c; λ, 0) = 0.

Remark 4.4 The critical potentials V0, V F
c , V F

1c and V F
2c have been defined in [7,48] without

the notation F . For consistence, we include them in Definition 4.3. F in all notations stands
for “first" while S stands for “second". V0, V10 and V20, in general, are referred to as the
reversal potentials of the total flux I (V ), the individual flux J1(V ) and the individual flux
J2(V ), respectively.

Lemma 4.5 Suppose L 
= R. Then,

V0 = kB T

e

(D2 − D1)(L − R)

(z1D1 − z2D2) f0(L, R)
, V10 = − kB T

z1e
ln

L

R
, V20 = − kB T

z2e
ln

L

R
,

V F
c = − kB T

e

(λ − 1)(L − R) f7(λ; L, R)

2(z1λ − z2) f0(L, R) f1(L, R)
, V F

1c = − kB T

e

(λ − 1)(L − R) f2(λ; L, R)

2(z1λ − z2) f0(L, R) f1(L, R)
,

V F
2c = − kB T

e

(λ − 1)(L − R) f3(λ; L, R)

2(z1λ − z2) f0(L, R) f1(L, R)
, V S

c = − kB T

e

2(λ − 1)(L − R) f8(λ; L, R)

(z1λ − z2) f0(L, R) f4(L, R)
,

V S
1c = kB T

e

(L − R) f5(λ; L, R)

z1(z1λ − z2) f0(L, R) f4(L, R)
, V S

2c = kB T

e

(L − R) f6(λ; L, R)

z2(z1λ − z2) f0(L, R) f4(L, R)
.

In particular, one has

V0 = z1D1V10 − z2D2V20

z1D1 − z2D2
, V F

c = z1D1V F
1c − z2D2V F

2c

z1D1 − z2D2
, V S

c = z1D1V S
1c − z2D2V S

2c

z1D1 − z2D2
.

Recall from [7] and [48] that, under electroneutrality conditions (4.1), one has

∂V I1(V ; λ, 0) > 0, ∂V J11(V ; λ, 0) > 0 and ∂V J21(V ; λ, 0) < 0.

However, for the second order terms in d , we have

Lemma 4.6 Assume L 
= R. Under the electroneutrality conditions (4.1), one has

∂V I2(V ; λ, 0) < 0, ∂V J12(V ; λ, 0) < 0 and ∂V J22(V ; λ, 0) > 0.

Directly, the following statement can be established.

Proposition 4.7 Assume L 
= R. Viewing Ik, J1k and J2k, k = 0, 1, 2 as functions of V , one
has
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(i) Both I0 and I1 are increasing in V , while I2 is decreasing in V . Furthermore, I0 > 0
(resp. I0 < 0) if V > V0 (resp. V < V0); I1 > 0 (resp. I1 < 0) if V > V F

c (resp.
V < V F

c ); and I2 > 0 (resp. I2 < 0) if V < V S
c (resp. V > V S

c ).
(ii) Both J10 and J11 are increasing in V , while J12 is decreasing in V . Furthermore,

J10 > 0 (resp. J10 < 0) if V > V10 (resp. V < V10); J11 > 0 (resp. J11 < 0) if
V > V F

1c (resp. V < V F
1c ); and J12 > 0 (resp. J12 < 0) if V < V S

1c (resp. V > V S
1c).

(iii) Both J20 and J21 are decreasing in V , while J22 is increasing in V . Furthermore,
J20 > 0 (resp. J20 < 0) if V < V20 (resp. V > V20); J21 > 0 (resp. J21 < 0) if
V < V F

2c (resp. V > V F
2c); and J22 > 0 (resp. J22 < 0) if V > V S

2c (resp. V < V S
2c).

The scaling laws for Ik, Jk0, Jk1 and the critical potentials V0, V F
c , V F

kc, V c
F , and V kc

F
have been discussed in [7,48]. For I2, Jk2 and other critical potentials defined in Definition
4.3, one has

Proposition 4.8 Viewing I2, Jk2, Vk0, V S
c and V S

kc as functions of (L, R) for k = 1, 2, one
has

(i) I2, J12 and J22 are homogeneous of degree three in (L, R), that is, for any
s > 0, I2(V ; sL, s R) = s3 I2(V ; L, R), J12(V ; sL, s R) = s3 J12(V ; L, R) and
J22(V ; sL, s R) = s3 J22(V ; L, R).

(ii) V S
c and V S

kc are homogeneous of degree zero in (L, R), that is, taking V S
c for example,

for any s > 0, V S
c (sL, s R) = V S

c (L, R).

In terms of the parameters (D1, D2), (L, R) and λ, we can provide a partial order for the
critical potentials identified in Definition 4.3, which provides deep insights into finite ion
size effects on ionic flows.

Lemma 4.9 Assume L > R, D2 > D1 and λ > 1. One has

V F
1c < V10 < V S

1c, V S
2c < V20 < V F

2c and V S
c < V0 < V F

c .

From Lemmas 4.7 and 4.9, we have

Theorem 4.10 Assume L > R, D2 > D1 and λ > 1. For the individual fluxes Jk(V ), k =
1, 2 and the total flux I (V ), with |J1(V )|, |J2(V )| and |I (V )| denoting the magnitude of
J1(V ), J2(V ) and I (V ), respectively, one has

(i) For the individual flux J1(V ),

(i1) if V < V F
1c , then, J10(V ) < 0, J11(V ) < 0 and J12(V ) > 0, that is, the ion

size effect from J11(V ) reduces J1(V ) while the one from J12(V ) enhances J1(V ).
Furthermore, J11(V ) enhances |J1(V )| while J12(V ) reduces |J1(V )|;

(i2) if V F
1c < V < V10, then, J10(V ) < 0, J11(V ) > 0 and J12(V ) > 0, that is, the ion

size effect from J11(V ) and J12(V ) both enhance J1(V ). Furthermore, they both
reduce |J1(V )|;

(i3) if V10 < V < V S
1c, then, J10(V ) > 0, J11(V ) > 0 and J12(V ) > 0, that is, the

ion size effect from J11(V ) and J12(V ) both enhance the J1(V ). Furthermore, they
both enhance |J1(V )|;

(i4) if V > V S
1c, then, J10(V ) > 0, J11(V ) > 0 and J12(V ) < 0, that is, the ion

size effect from J11(V ) enhances J1(V ) while the one from J12(V ) reduces J1(V ).
Furthermore, J11(V ) enhances |J1(V )| while J12(V ) reduces |J1(V )|.

(ii) For the individual flux J2(V ),
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(ii1) if V < V S
2c, then, J20(V ) > 0, J21(V ) > 0 and J22(V ) < 0, that is, the ion

size effect from J21(V ) enhances J1(V ) while the one from J22(V ) reduces J1(V ).
Furthermore, J11(V ) enhances |J1(V )| while J12(V ) reduces |J1(V )|;

(ii2) if V S
2c < V < V20, then, J20(V ) > 0, J11(V ) > 0 and J12(V ) > 0, that is, the ion

size effect from J11(V ) and J12(V ) both enhance J1(V ). Furthermore, they both
enhance |J1(V )|;

(ii3) if V F
20 < V < V F

2c , then, J20(V ) < 0, J21(V ) > 0 and J22(V ) > 0, that is, the ion
size effect from J21(V ) and J22(V ) both enhance J2(V ). Furthermore, they both
reduce |J2(V )|;

(ii4) if V > V F
2c , then, J20(V ) < 0, J21(V ) < 0 and J22(V ) > 0, that is, the ion

size effect from J11(V ) reduces J2(V ) while the one from J22(V ) enhances J2(V ).
Furthermore, J21(V ) enhances |J2(V )| while J22(V ) reduces |J2(V )|.

(iii) For the total flow rate of charge I (V ),

(iii1) if V < V S
c , then, I0(V ) < 0, I1(V ) < 0 and I2(V ) > 0, that is, the ion size effect

from I1(V ) reduces I (V ) while the one from I2(V ) enhances I (V ). Furthermore,
I1(V ) enhances |I (V )| while I2(V ) reduces |I (V )|;

(iii2) if V S
c < V < V0, then, I0(V ) < 0, I1(V ) < 0 and I2(V ) < 0, that is, the ion size

effect from I1(V ) and I2(V ) both reduce I (V ). Furthermore, they both enhance
|I (V )|;

(iii3) if V0 < V < V F
c , then, I0(V ) > 0, I1(V ) < 0 and I2(V ) < 0, that is, the ion

size effect from I1(V ) and I2(V ) both reduce I (V ). Furthermore, they both reduce
|I (V )|;

(iii4) if V > V F
c , then, I0(V ) > 0, I1(V ) < 0 and I2(V ) < 0, that is, the ion size

effect from I1(V ) enhances I (V ) while I2(V ) reduces I (V ). Furthermore, I1(V )

enhances |I (V )| while I2(V ) reduces |I (V )|.
Remark 4.11 Similar results can be established for the case with L > R, D2 < D1 and
0 < λ < 1.

To end this section, we comment that for the system (2.6) with dimensions, one may
consider the cation to be Na+ and the anion to be Cl−, and λ is the ratio of the diameter of
Na+ to Cl−. Then, we may take (the diffusion constants are from [49])

DNa = 1.334 × 10−9m2/s, DCl = 2.032 × 10−9m2/s, L = 0.2mol, R = 0.02mol,

kB = 1.381 × 10−23 J K −, T = 273.16K , e = 1.602 × 10−19C, z1 = −z2 = 1 and

λ = 1.885.

It follows directly that

V F
1c = −1.6696 × 10−1 JC−, V10 = −5.4221 × 10−2 JC−1, V S

1c = 1.3239 × 10−1 JC−1,

which satisfies the relation V F
1c < V10 < V S

1c as started in Lemma 4.9. Similarly, one can
check others. Also, this relation should hold for ε > 0 small.

4.2 Combining Effects from the First and the Second Order Terms

In Theorem 4.10, the critical potentials identified in Definition 4.3 split the potential region
into different subregions, over which distinct dynamics of ionic flows are oberved, in partic-
ular, the ion size effects from different orders (in d) are characterized in details. However,
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the essential effects (combination effects from the first order term and the second order term)
from finite ion size on ionic flows are not clear. To better understand the finite ion size effects
on ionic flows, we introduce another three critical potentials V b

c , V b
1c and V b

2c defined as
follows:

Definition 4.12 We define three critical potentials V b
c , V b

1c and V b
2c by

I1(V b
c ; λ, 0) + d I2(V b

c ; λ, 0) = 0, J11(V b
1c; λ, 0) + d J12(V b

1c; λ, 0) = 0,

J21(V b
2c; λ, 0) + d J22(V b

2c; λ, 0) = 0.

Lemma 4.13 Assume L 
= R and λ > 1. For d > 0 small, one has

V b
c = − kB T

e

(λ − 1)(L − R)
(

f7(λ; L, R) − 2(z1λ−z2)
z1z2

f8(λ; L, R)d
)

2(z1λ − z2) f0(L, R)
(

f1(L, R) − z1λ−z2
2z1z2

f4(L, R)d
) ,

V b
1c = − kB T

e

(λ − 1)(L − R)
(

f2(λ; L, R) + z1λ−z2
z21z2(λ−1)

f5(λ; L, R)d
)

2(z1λ − z2) f0(L, R)
(

f1(L, R) − z1λ−z2
2z1z2

f4(L, R)d
) ,

V b
2c = − kB T

e

(λ − 1)(L − R)
(

f3(λ; L, R) + z1λ−z2
z1z22(λ−1)

f6(λ; L, R)d
)

2(z1λ − z2) f0(L, R)
(

f1(L, R) − z1λ−z2
2z1z2

f4(L, R)d
) .

In particular,

V b
c = z1D1V b

1c − z2D2V b
2c

z1D1 − z2D2
.

Remark 4.14 In Lemma 4.13, the critical potentials V b
c and V b

kc, k = 1, 2 as functions of
(L, R) don’t share the scaling laws as other critical potentials defined in the Definition 4.3,
which is not a surprise since it reflects the mixed finite ion size effects from both the first
order and the second order corrections. On the other hand, the critical potentials identified
in Definition 4.3 except the reversal potentials V0, V10 and V20, all depend on the parameter
λ (recall that λ = d/d2, where d = d1 the diameter of the cation and d2 the diameter
of the anion), which provides information of relative ion size effects. However, the critical
potentials identified in Definition 4.12 do depend on the diameter of the cation explicitly,
and this further provides important information on the study of ion size effects on ionic
flows. We would also like to point out that the critical potentials defined in (4.12) could
be experimentally estimated. To be specific, one can take an experimental I–V relation as
I (V ; λ, d) and numerically (or analytically) compute I0(V ) for ideal case that allows one to
get an estimate of V b

c .

For convenience in our following discussion, we introduce three functions I d , J d
1 and J d

2 of
the potential V defined by

I d(V ) = I1(V ) + d I2(V ), J d
1 (V ) = J11(V ) + d J12(V ), J d

2 = J21(V ) + d J22(V ).

Clearly, they contain ion size effects on ionic flows. The potentials defined in Definition 4.12
are the critical potentials that balance the ion size effects on the total flux I (V ), and the
individual fluxes J1(V ) and J2(V ).

Theorem 4.15 Assume L > R, D2 > D1 and λ > 1. For d > 0 small, one has
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(i) I d(V ) is increasing (resp. decreasing) in the potential V if x > x∗
1 (resp. 1 < x < x∗

1 ),
where, with x = L/R > 1, x∗

1 is the root of

g1(x) = x − 1

ln x
− x + 1

2
− (z1λ − z2)d R

2z1z2

[
4

(
x − 1

ln x
− x + 1

2

)2

+ x2 − 1

2 ln x
+ x

]
.

Hence,

(i1) For 1 < x < x∗
1 , I d(V ) > 0 (resp. I d(V ) < 0) if V < V b

c (resp. V > V b
c );

that is, the ion size effect eventually enhances the total flux I (V ) if V < V b
c , while

eventually reduces it if V > V b
c .

(i2) For x > x∗
1 , I d(V ) > 0 (resp. I d(V ) < 0) if V > V b

c (resp. V < V b
c ); that is, the

ion size effect eventually enhances the total flux I (V ) if V > V b
c , while eventually

reduces it if V < V b
c .

(ii) J d
1 (V ) is increasing (resp. decreasing) in the potential V if x > x∗

1 (resp. 1 < x < x∗
1 ).

Hence,

(ii1) For 1 < x < x∗
1 , J d

1 (V ) > 0 (resp. J d
1 (V ) < 0) if V < V b

1c (resp. V > V b
1c); that

is, the ion size effect eventually enhances the total flux J1(V ) if V < V b
1c, while

eventually reduces it if V > V b
1c.

(ii2) For x > x∗
1 , J d

1 (V ) > 0 (resp. J d
1 (V ) < 0) if V > V b

1c (resp. V < V b
1c); that is, the

ion size effect eventually enhances the total flux J1(V ) if V > V b
1c, while eventually

reduces it if V < V b
1c.

(iii) J d
2 (V ) is increasing (resp. decreasing) in the potential V if 1 < x < x∗

1 (resp. x > x∗
1 ).

Hence,

(iii1) For 1 < x < x∗
1 , J d

2 (V ) > 0 (resp. J d
2 (V ) < 0) if V > V b

2c (resp. V < V b
2c); that

is, the ion size effect eventually enhances the total flux J2(V ) if V > V b
2c, while

eventually reduces it if V < V b
2c.

(iii2) For x > x∗
1 , J d

2 (V ) > 0 (resp. J d
2 (V ) < 0) if V < V b

2c (resp. V > V b
2c); that is, the

ion size effect eventually enhances the total flux J2(V ) if V < V b
2c, while eventually

reduces it if V > V b
2c.

Lemma 4.16 Assume L > R, D2 > D1 and λ > 1. For d > 0 small, one has V b
2c < V b

c <

V b
1c if 1 < x < x∗

1 ; V b
1c < V b

c < V b
2c if x > x∗

1 , where x∗
1 is identified in Theorem 4.15.

Recall that I = z1D1 J1 + z2D2 J2 with z1 > 0, z2 < 0 and Jk = Dk Jk . Together with the
total order of the critical potentials V b

c , V b
1c and V b

2c provided by Lemma 4.16, we have

Theorem 4.17 Assume L > R, D2 > D1 and λ > 1. For d > 0 small, one has

(i) With 1 < x < x∗
1 ,

(i1) For V < V b
2c, the ion size effect eventually reduces J2(V ) while enhances J1(V ),

but enhances I (V );
(i2) For V b

2c < V < V b
c , the ion size effect eventually enhances both J1(V ) and J2(V ),

but enhances I (V );
(i3) For V b

c < V < V b
1c, the ion size effect eventually enhances both J1(V ) and J2(V ),

but reduces I (V );
(i4) For V > V b

1c, the ion size effect eventually reduces J1(V ) while enhances J2(V ),
and reduces I (V ).
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(ii) With x > x∗
1 ,

(ii1) For V < V b
1c, the ion size effect eventually enhances J2(V ) while reduces J1(V ),

but reduces I (V );
(ii2) For V b

1c < V < V b
c , the ion size effect eventually enhances both J1(V ) and J2(V ),

but reduces I (V );
(ii3) For V b

c < V < V b
2c, the ion size effect eventually enhances both J1(V ) and J2(V ),

and enhances I (V );
(ii4) For V > V b

2c, the ion size effect eventually reduces J2(V ) while enhances J1(V ),
but enhances I (V ).

Remark 4.18 In Theorem 4.10, we focus on the ion size effect from the first order terms
I1(V ; λ), Jk1(V ; λ) and the second order terms I2(V ; λ), Jk2(V ; λ) separately, more pre-
cisely, we considered whether the ion size effect from the first order terms or from the second
order terms enhances/reduces the ionic flux, and did not characterize the essential ion size
effect from the combination of the first order terms and the second order terms, which is
studied in Theorem 4.15. In particular, in Theorem 4.17, both statement (i) and statement
(ii) provide very interesting results. Take the statement (i) for example, for V b

2c < V < V b
c ,

the ion size effect enhances the individual fluxes J1(V ) and J2(V ), and hence, enhances
z1 J1(V ) and reduces z2 J2(V ) since z1 > 0 and z2 < 0, but eventually enhances the total
flow rate of charges I (V ) = z1D1 J1(V )+ z2 J2D2(V ) since D1 > 0 and D2 > 0. However,
in the distinct potential subregion V b

c < V < V b
1c, the ion size effect enhances the individual

fluxes J1(V ) and J2(V ) too, but reduces the total flow rate of charges I (V ). This observa-
tion further indicates the sensitive dependence of the ionic flow properties on the interplays
among different system parameters. This process is not intuitive and mathematical analysis
is necessary to help better understand the dynamics of ionic flows.

To end this section, we provide a partial order of the critical potentials V0, V10, V20,

V F
c , V F

1c , V F
2c, V S

c , V S
1c, V S

2c, V b
c , V b

1c and V b
c2 identified in Definitions 4.3 and 4.12,

which further depends on more complicate nonlinear interplays among other system param-
eters, such as the diffusion coefficients (D1, D2), the ionic valences (z1, z2), the boundary
concentrations (L, R) and the ion sizes (d, λ).

Lemma 4.19 Assume L > R, D2 > D1 and λ > 1. For d > 0 small, with x∗
1 identified in

Theorem 4.15, one has

(i) V F
1c < V10 < V S

1c < V b
1c if

f 20 (L,R)

L2+L R+R2 < z1λ−z2
2z1(λ−1) and 1 < x < x∗

1 .

(ii) V S
2c < V20 < V F

2c < V b
2c if x > x∗

1 .
(iii) V S

c < V0 < V F
c < V b

c if x > x∗
1 .

(iv) V10 < V0 < V20, V F
1c < V F

c < V F
2c and V S

2c < V S
c < V S

1c.

Remark 4.20 With the partial orders of the critical potentials provided in Lemma 4.19, in
particular the first three statements, one is allowed to further examine the finite ion size
effects on the total flux I (V ; λ) and the individual fluxes Jk(V ; λ), k = 1, 2. The argument
will be similar to those in Theorems 4.10 and 4.17, and we leave it to the reader.

4.3 Case Studies of Ion Size Effects Near L = R

Recall that one motivation of this work is due to the observation I1(V ; λ, 0) → 0,
J11(V ; λ, 0) → 0 and J21(V ; λ, 0) → 0 as L → R. In other words, as L approaches
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R, the leading terms I1(V ; λ, 0), J11(V ; λ, 0) and J21(V ; λ, 0) cannot provide information
for the effects from finite ion size, and higher order terms need to be considered. We now
take a further look at this special case.

Lemma 4.21 For fixed R > 0, one has

lim
L→R

J10(V ; 0) = − lim
L→R

J20(V ; 0) = e

kB T

R

H(1)
V ,

lim
L→R

J11(V ; λ, 0) = lim
L→R

J21(V ; λ, 0) = 0,

lim
L→R

J12(V ; λ, 0) = − lim
L→R

J22(V ; λ, 0) = −2(z1λ − z2)2R3

z21z22H(1)

e

kB T
V .

From (4.2), we have

lim
L→R

I0(V ; 0) = (z1D1 − z2D2)R

H(1)

e

kB T
V , lim

L→R
I1(V ; λ, 0) = 0,

lim
L→R

I2(V ; λ, 0) = − 2
(z1D1 − z2D2)(λz1 − z2)2R3

z21z22H(1)

e

kB T
V .

Directly, the following statement can be established.

Theorem 4.22 As L → R, one has

(i) V0 = V10 = V20 = V S
1c = V S

2c = V S
c = 0;

(ii) I0(V )I2(V ; λ) < 0 and Jk0(V )Jk2(V ; λ) < 0, k = 1, 2, if V 
= 0; that is, the ion size
effect always reduces the total flux I (V ) and the individual flux Jk, k = 1, 2 if V 
= 0;
and hence the magnitudes |I (V )| and |Jk(V )| for k = 1, 2.

Wewould like to comment that the first statement of Theorem 4.22 can be verified directly
either from Lemma 4.21 or from the expressions obtained in Lemma 4.5 by taking the limit
as L → R.

Proposition 4.23 As L → R, one has

J12(V ; λ)

J10(V )
= J22(V ; λ)

J20(V )
= I2(V ; λ)

I0(V )
= −2(z1λ − z2)2R2

z21z22
.

Remark 4.24 Proposition 4.23 indicates that the finite ion size effects from the second order
terms Jk2(V ; λ), k = 1, 2 and I2(V ; λ) will be significant as L → R for Rd > 1.

5 Concluding Remarks

In this work, we further study the effects on ionic flows from finite ion sizes via the method
of asymptotic expansions up to the second order due to the observation that the first-order
terms approach zero, in other words, the finite ion size effects on ionic flows disappear, when
the left and right boundary concentrations are close for the same ion species. On the other
hand, considering higher order terms may help us perceive the properties of the expansion
and generalize it for any size, not just the small sizes of ions. The interactions between the
first-order and the second-order terms are also described to better understand the ionic flow
properties.Moreover, critical potentials are identified to help usmonitor the dynamics of ionic
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flows. For this simple setup, complicated nonlinear interplays among system parameters,
particularly, the diffusion constants (D1, D2) and the boundary concentrations (L, R) are
characterized, which are not intuitive, and provide insights into the internal dynamics of
ionic flows through membrane channels. This could be very helpful for the future studies
along this direction, not only mathematically or numerically, but experimentally since the
internal dynamics of ion channels cannot be measured with present technology.

We would also like to point out that since ions are crowded, more general setups, such as
more cations are included, for the PNP model should be studied. Of particular interest is the
case with multiple cations that have the same valences but different ion sizes, like Na+ and
K+. We believe mathematical studies will provide deep insights into the selectivity of ion
channels over different cations.
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