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Abstract
In this work, for ionic flows through ion channels involving three ion species (two cations
with different valences and one anion), we examine how channel structure (permanent charge
distribution) interacts with boundary conditions to affect individual fluxes. This is analyzed
via a quasi-one-dimensional classical Poisson–Nernst–Planck model and, as an early step,
the focus is on finding of new phenomena presented by the biological settings with three ion
species (comparing to two ion species). Permanent charges are taken to be piecewise constant
with three regions: zeros over two end regions of the channel including the baths and a constant
over the middle region. For ionic flows involving two ion species (one cation and one anion),
the topic has been recently examined and important phenomena, some counterintuitive, were
revealed. For ionic flows involving three ion species treated in this work, even for small
permanent charges and for a special case of boundary conditions, several striking phenomena
are discovered and the study also immediately leads to a number of questions. We hope and
believe the rich behavior revealed in this work for the special case will stimulate a great deal
of research along this line in the near future.

Keywords Ionic flux · Permanent charge · Flux ratio
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1 Introduction

The electrodiffusion process of ions (charged particles) plays a critical role for living organ-
isms. The basic units where migration of ions take place are membrane proteins (ion
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channels) that provide major channels for cells to communicate and coordinate with other
cells for major biological functions [22–26,52,59]. Ion channels are nano valves for life
[7,12,13,15,31,32,36]. There are many different types of ion channels defined mainly by
their protein structures or permanent charges. Ionic flow properties are major concerns of
physiological ion channels and are controlled by the nonlinear interplay between permanent
charges and transmembrane electric potential as well as boundary concentrations. Ionic flow
through ion channels is a special electrodiffusion process with a number of specifics. It is
a problem with multiple interacting physical parameters and presents multi-scales too (see
[1,14,16,17,39,40,51,54,55,60]).

The structure of many ion channels is now known thanks to the revolutionary advances of
cryo-electron microscopy, recognized in the 2018 Nobel Prize. This work greatly enhances
the study of permanent charge effects on ionic flow toward a comprehensive understanding
of ion channel properties. On the other hand, great challenges are still present. Due to the
limitation of present experimental techniques, the major experimental measurement of ionic
flows is the I-V relation defined in (1.5) below [4,6,11], which is an input-output type infor-
mation of an average effect of physical parameters on ionic flows; in particular, it is still not
possible to “measure/observe” internal dynamical behaviors of ionic flows. Those features
make it difficult for researchers to extract quantitative information or identify characteristics
from experimental data that are critical for classifying general behavior of ionic flows and
for identifying possible effect of permanent charges on ionic flows. Measurements of I-V
relations however can determine some characteristics of ion channels quite well, using well
established methods of the theory of inverse problems [9,10].

The aforementioned challenges strongly suggest the importance of mathematical models
and analysis and numerical simulations as complementary tools to the physiological theory
and experiments. Mathematical study could provide deep correspondences from the multiple
parameters involved to the internal dynamics and to properties of ion channels, at least for
the simplified settings used in many biological experiments. The basic primitive models for
ionic flows are the Poisson–Nernst–Planck (PNP) type models and have been analyzed and
simulated extensively [2,3,17,30,48]. The geometric singular perturbation theory relies on
special structures of the PNPmodels developed in [17,34,38–40,44] that allow a systematical
study of several ion channel problems in [18,29,35,41,45,46,62,63].

To measure permanent charge effects on fluxes, a flux ratio was introduced in [41] (see
(1.6) below). This flux ratio measures effects on fluxes of permanent charges relative to
zero permanent charge. It is an important characteristic for roles of permanent charges, as
demonstrated by a number of phenomena, some counterintuitive, revealed in [29,35,41,63]
for ionic flows involving two ion species (one cation and one anion). We remark that the
choice of zero permanent charge as a reference in the definition of the flux ratio is actually
not a restriction, in particular, one can include large permanent charges in the study of flux
ratios. In fact, one can express the ratio between fluxes of any two permanent charges in
terms this flux ratio. Nevertheless there are a number of merits for a direct examination of
ratios between fluxes of any two permanent charges, for example, one may study properties
of a mutant protein of an ion channel by studying ratios between fluxes associated to the
mutated permanent charge and those of the original permanent charge. Furthermore, there
are properties of ratios betweenfluxes of twopermanent charges that could not be derived from
properties of flux ratios relative to zero permanent charge. This general flux ratio is currently
under investigation by the authors. We also remark that this flux ratio measuring permanent
charge effects is different from Ussing’s flux ratio [58] and from Hodgkin-Keynes’ flux ratio
exponent [27]. The latter twomeasure fluxeswith the same permanent charges under different
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setups of boundary conditions.We refer interested readers to [33] for a detailed mathematical
treatment of Ussing’s flux ratio and Hodgkin-Keynes’ flux ratio exponent.

In this work, for ionic flows through ion channels involving three ion species (two cations
with different valences and one anion), we examine roles of permanent charges in ion chan-
nel properties by comparing permanent charge effect on fluxes of different ion species.
This is analyzed via a quasi-one-dimensional classical PNP model and based on the flux
ratio for permanent charge effects introduced in [41] and mentionedx above. By includ-
ing some essential physical laws and biological specifics, with the rather idealized PNP
model, our purpose for this paper is, taking the advantage of mathematical (explicit or
implicit) formulas for the central quantities, to discover new phenomena and to formulate new
characteristics/quantities that are directly related to biology, hoping these will be observed
experimentally and useful in general. We will take permanent charges to be piecewise con-
stant with three regions: zeros over two end regions of the channel including the baths and
a constant over the middle region. It turns out the phenomena are extremely rich—even
for a case study carried out in this paper with the classical PNP model. The rich behavior
reflects the presence of multiple parameters—they all are relevant in the sense that differ-
ent regions of parameters produce distinct behaviours. We remark that the many different
classes of behavior provide the channel, and its designer (evolution) and its enemies (diseases
for the most part) with many ways to control the ionic current and thus the function of the
channel.

Recently there are several papers on ionic flow with three ion species, two cation species
with the same valence and one anion species, and some interesting results are obtained
on competition of the two cations [5,61,64]. The mathematical analysis for those work are
relatively simpler in the sense that it can be more or less reduced to two ion species cases
as in, for example, [35] although the reduction seems not to occur in a straightforward
way.

The analysis for two ion species does not work for the present case with three ion species
of different valences. Our concrete results are under further assumptions (see Sect. 1.3)
including that the permanent charge is small in absolute value and are as specific as possible,
and hence, one should expect that statements of results are not so simple and, of course, the
analysis would be more involved. Here are two samples of results in this work (see more in
Sect. 4).

(i) Under some boundary conditions, a nonnegative permanent charge can enhance the flux
of a cation (a positively charged ion) species with larger valence more than that of a
cation species with smaller valence.

(ii) Under some boundary conditions, a nonnegative permanent charge can enhance the
flux of a cation species (either of the two cation species) more than that of an anion (a
negatively charged ion) species.

As shown in [41], (ii) is impossible for ionic flow with one cation and one anion.
In the rest of this introduction, we recall a quasi-one-dimensional PNP model for ionic

flow and the flux ratio for permanent charge effect on individual fluxes, and present the setup
of our case study.
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1.1 A Quasi-One-Dimensional PNPModel for Ion Flows

For a mixture of n ion species, a quasi-one-dimensional PNP model [43,47] is

1

A(X)

d

dX

(
εr (X)ε0A(X)

d�

dX

)
= −e0

( n∑
s=1

zsCs + Q(X)

)

dJk

dX
= 0, − Jk = 1

kBT
Dk(X)A(X)Ck

dμk

dX
, k = 1, 2, · · · , n,

(1.1)

where X ∈ [a, b] is the coordinate along the longitudinal axis of the channel, A(X) is the area
of cross-section of the channel at the location X , εr (X) is the relative dielectric coefficient, ε0
is the vacuumpermittivity, e0 is the elementary charge,Q(X) is the permanent charge density,
kB is the Boltzmann constant, T is the absolute temperature; � is the electric potential, and,
for the k-th ion species, zk is the valence (the number of charges per particle), Ck is the
concentration, Jk(X) is the flux density through the cross-section over X ,Dk is the diffusion
coefficient, and μk is the electrochemical potential depending on � and Ck .

The electrochemical potential μk = μid
k + μex

k for the k-th ion species consists of the
ideal component μid

k given by

μid
k = zke0� + kBT ln

Ck

C0
(1.2)

where C0 is a characteristic concentration, and the excess component μex
k that accounts

for finite sizes of ions [8,19–21,30,34,37,38,42,49,50,53,56,57]. The classical PNP (cPNP)
model deals only with the ideal component μid

k .
Associated to system (1.1), we consider boundary conditions, for k = 1, 2, · · · , n,

�(a) = V, Ck(a) = Lk > 0; �(b) = 0, Ck(b) = Rk > 0. (1.3)

For boundary conditions, one often imposes the electroneutrality conditions to avoid sharp
boundary layers (see, e.g. [62,63])

n∑
s=1

zsLs =
n∑

s=1

zsRs = 0. (1.4)

A major quantity that is measured in labs and used for extracting ion channel properties
is the I-V (current-voltage) relation defined, in terms of solutions of the boundary value
problem (BVP) (1.1) and (1.3), as follows. For fixedLk’s andRk’s, a solution (�,Ck,Jk) of
the BVP will depend on the voltage V only. The stationary current (the flow rate of charges),
I, is given by

I =
n∑

s=1

zsJs(V). (1.5)

1.2 Flux Ratios for Permanent Charge Effects on Ionic Fluxes

We recall the concept of flux ratio for permanent charge effects on ionic fluxes introduced in
[41]. For fixed boundary conditions V , Lk’s and Rk’s, let Jk(Q) be the flux of the k-th ion
species associated with the permanent charge Q = Q(X), then the flux ratio for the kth ion
species is
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λk(Q) = Jk(Q)

Jk(0)
. (1.6)

Since the boundary conditions are the same, Jk(Q) and Jk(0) have the same sign as that
of μk(a) − μk(b) (see [41] and Remark 2.1 therein for cases where μk(a) = μk(b)). Thus,
λk(Q) ≥ 0. The value of λk(Q) does depend on the boundary conditions.

Naturally, one says the permanent charge Q enhances the flux of the kth ion species if
λk(Q) > 1, it inhibits the flux of the kth ion species if λk(Q) < 1, and it enhances the
flux of i th ion species more than that of j th ion species if λi (Q) > λ j (Q) (regardless the
magnitudes of λi (Q) and λ j (Q) relative to 1).

For n = 2 with z1 > 0 > z2, it is known [35] that, for Q ≥ 0, depending on also
the boundary conditions, either λk(Q) ≥ 1 or λk(Q) < 1 may occur for k = 1, 2; on the
other hand, it is shown in [41] that, if Q ≥ 0 (not necessarily a piecewise constant), then
λ1(Q) < λ2(Q), independent of boundary conditions.

For n = 3 with z1 > z2 > 0 > z3, it is not hard to believe that, for Q ≥ 0, depending
on also the boundary conditions, either λk(Q) ≥ 1 or λk(Q) < 1 may occur for k = 1, 2, 3;
we are thus interested in comparative effects of Q among ion species, that is, in signs of
λi (Q) − λ j (Q). It turns out the situation is much richer than that for n = 2 as previously
mentioned. In this paper, after a preparation in Sect. 3 for the setup of small |Q|, we will
focus on a case study in Sect. 4 with equal-chemical-potential-difference.

1.3 Dimensionless PNP and Setup of Our Case Study

For convenience of mathematical analysis of BVP (1.1) and (1.3), we will work on a dimen-
sionless form. Let C0 be a characteristic concentration of the problems, for example,

C0 = max
1≤k≤n

{Lk,Rk, sup
X∈[0,l]

|Q(X)|}.
Set

D0 = max
1≤k≤n

{
sup

X∈[0,l]
Dk(X)

}
and ε̂r = sup

X∈[0,l]
εr (X).

Let

x = X − a

b − a
, h(x) = A(X)

(b − a)2
, Dk(x) = Dk(X)

D0
, Q(x) = Q(X)

C0
,

ε̄r (x) = εr (X)

ε̂r
, ε2 = ε̄rε0kBT

e20(b − a)2C0
, μ̄k = 1

kBT
μk,

φ(x) = e0
kBT

�(X), ck(x) = Ck(X)

C0
, J̄k = Jk

lC0D0
.

(1.7)

In terms of the new variables, the BVP (1.1) and (1.3) becomes, for k = 1, 2, . . . , n,

ε2

h(x)

d

dx

(
ε̄r (x)h(x)

dφ

dx

)
= −

n∑
s=1

zscs − Q(x),

d J̄k
dx

= 0, − J̄k = h(x)Dk(x)ck
dμ̄k

dx
,

(1.8)

with the boundary conditions at x = 0 and x = 1

φ(0) = V = e0
kBT

V, ck(0) = lk = Lk

C0
; φ(1) = 0, ck(1) = rk = Rk

C0
. (1.9)
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Remark 1.1 Note that, if one swaps the ion channel together with the boundary conditions,
that is, if one makes the following change of variables

x → 1 − x; (V , lk, rk) → (−V , rk, lk),

then one can track the state variables easily. This yields the following symmetry of the
boundary value problem:

If (φ(x), ck(x), J̄k) is a solution of the BVP with (φ(0), ck(0);φ(1), ck(1)) =
(V , lk; 0, rk), then (φ∗(x), c∗

k (x), J̄
∗
k ) = (φ(1 − x), ck(1 − x),− J̄k) is a solution of the

BVP with (φ∗(0), c∗
k (0);φ∗(1), c∗

k (1)) = (−V , rk; 0, lk).

The main focus of this paper is to examine effects of permanent charges on fluxes for
three ion species via the simplest model, the cPNP model (1.8) and (1.9) with the ideal
electrochemical potential μ̄k = μ̄id

k . More precisely, we will assume

(A1) We consider three ion species (n = 3) with z1 > z2 > 0 > z3;
(A2) We assume that ε̄r (x) = 1 and Dk(x) = Dk for some positive constants Dk ;
(A3) A piecewise constant permanent charge Q with one nonzero region; that is, for a

partition 0 = x0 < x1 < x2 < x3 = 1 of [0, 1],

Q(x) =
{
Q1 = Q3 = 0, x ∈ (x0, x1) ∪ (x2, x3),
Q2, x ∈ (x1, x2),

(1.10)

where |Q2| is small relative to lk’s and rk’s;
(A4) For μ̄k , we only include the ideal component μ̄id

k = zkφ + ln ck .

We will assume ε > 0 small and treat system (1.8) as a singularly perturbed system and
apply the geometric singular perturbation framework from [17,40] for BVP (1.8) and (1.9).
To this end, set

� = diag{z1, z2, · · · , zn}, e0 = (1, 1, · · · , 1)T , H(x) =
∫ x

0

ds

h(s)
, α j = H(x j )

H(1)
.

The rest of the paper is organized as follows. In Sect. 2, we briefly review the theory of
geometric singular perturbations (GSP) developed for PNP models in [40,44] and collect
relevant results. In Sect. 3, we consider the small permanent charge situation and formulate
the quantities and basic results for comparing effects of permanent charges on fluxes of
each pair of ion species. Section 4 treats a case with equal chemical potential difference and
provides detailed results on comparative effects of permanent charges; in particular, several
interesting phenomena are discovered that are not intuitive, some are even counterintuitive to
the authors. Several numerical results are provided to illustrate some analytical predictions.
Section 5 provides a brief summary of this work. In the Appendix (Sect. 6), we establish two
technical results that form the first step for the study in Sect. 3.

2 GSP for the BVP (1.8) and (1.9): A Quick Review

For convenience, we will give a brief and quick account of the GSP framework and relevant
results in [40,44] (with slightly different notations) and refer the readers to these papers and
references therein for details. We remind the readers that we will work on cPNP with ideal
electrochemical potential μ̄k = μ̄id

k = zkφ + ln ck .
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2.1 Converting the BVP to a Connecting Orbit Problem

We rewrite system (1.8) into a standard form of singularly perturbed systems and convert the
BVP (1.8) and (1.9) to a connecting orbit problem.

Denote the derivative with respect to x by overdot and introduce u = εφ̇, w = x and
Jk = J̄k/Dk . System (1.8) becomes, for k = 1, 2, . . . , n,

εφ̇ = u, εu̇ =
n∑

s=1

zscs − Q(w) − ε
hw(w)

h(w)
u,

εċk = −zkcku − ε

h(w)
Jk, J̇k = 0, ẇ = 1.

(2.1)

System (2.1) will be treated as a dynamical system with the phase space R2n+3 and the
independent variable x is viewed as time for the dynamical system. The boundary condition
(1.9) becomes, for k = 1, 2, . . . , n,

φ(0) = V , ck(0) = lk, w(0) = 0; φ(1) = 0, ck(1) = rk, w(1) = 1.

Following [17,40,44], we convert the boundary value problem to a connecting problem.
Let BL and BR be the subsets of the phase space R2n+3 defined by

BL = {(φ, u,C, J , w) : φ = V , C = L, w = 0},
BR = {(φ, u,C, J , w) : φ = 0, C = R, w = 1}, (2.2)

where C = (c1, c2, . . . , cn)T , J = (J1, J2, . . . , Jn)T , L = (l1, l2, . . . , ln)T and R =
(r1, r2, . . . , rn)T . Then, the BVP (1.8) and (1.9) is equivalent to the following connecting
orbit problem: finding an orbit of (2.1) from BL to BR .

The construction of a connecting orbit consists of two main steps (see, [17,40,44]).
Step 1. The first step is to construct a singular orbit.
Due to the jumps of Q(x) in (1.10) at x1 and x2, this construction can be accomplished

by constructing a singular orbit over each subinterval. To do so, one preassigns (unknown)
values of φ and ck’s at each jump point x j of Q(x) as

φ(x j ) = φ[ j], ck(x j ) = c[ j]
k , j = 1, 2, (2.3)

and, introduces the sets for j = 0, 1, 2, 3,

Bj = {(φ, u,C, J , w) : φ = φ[ j], C = C [ j], w = x j }. (2.4)

Note that B0 = BL and B3 = BR (see (2.2)). We then construct singular orbits over each
interval [x j−1, x j ] for the connecting problem between Bj−1 and Bj .

At the end, we match those singular orbits at x1 and x2 to obtain one singular orbit over
the whole interval [0,1].

Step 2. It involves a justification of the existence of an orbit for ε > 0 near the singular
orbit—the validation of the singular orbit. For Q(x) = 0, this is justified in [44], and for
small |Q(x)|, this is justified by continuity.

For this work, we will be interested in only singular orbits of the problem and focus on
consequences about permanent charge effects on fluxes.
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2.2 Construction of Singular Orbits Connecting Bj−1 and Bj

Recall the slow manifold is

Z j =
{ n∑

s=1

zscs + Q j = 0, w ∈ [x j−1, x j ]
}

⊂ R
2n+3. (2.5)

A typical singular connecting orbit between Bj−1 and Bj consists of two fast orbits (singular
layers) �[ j−1,+] at x j−1 between Bj−1 and Z j and �[ j,−] at x j between Bj and Z j , and one
slow orbit (regular layer) � j over [x j−1, x j ] on Z j .

2.2.1 Fast Dynamics for Singular Layers at xj−1 and xj

As in [40], the limiting fast system is

φ′ = u, u′ =
n∑

s=1

zscs − Q(w),

c′
k = −zkcku, J ′

k = 0, w′ = 0.

(2.6)

Let φ = φ[ j−1,+] be the root (it is unique) of
n∑

s=1

zsc
[ j−1]
s ezs (φ

[ j−1]−φ) + Q j = 0; (2.7)

and let φ = φ[ j,−] be the unique root of
n∑

s=1

zsc
[ j]
s ezs (φ

[ j]−φ) + Q j = 0. (2.8)

A characterization of layers�[ j−1,+] and�[ j,−] is provided in Proposition 3.3 in [40]. For
this work, we need only the following consequences. Let N [ j−1,+] = M [ j−1,+] ∩ Ws(Z j )

and let N [ j,−] = M [ j,−] ∩Wu(Z j ) where M [ j−1,+] is the forward trace of Bj−1 and M [ j,−]
is the backward trace of Bj under the flow (2.6).

Proposition 2.1 (i) At x j−1,

u[ j−1,+] = δ
[ j−1]
+

√√√√ n∑
s=1

2c[ j−1]
s (1 − ezs (φ[ j−1]−φ[ j−1,+])) − 2Q j (φ[ j−1] − φ[ j−1,+])

where δ
[ j−1]
+ = sgn(φ[ j−1,+] − φ[ j−1]); and the ω-limit set of N [ j−1,+] is

ω(N [ j−1,+]) = {(φ[ j−1,+], 0,C [ j−1,+], J , x j−1) : all J } ⊂ Z j ,

with c[ j−1,+]
k = c[ j−1]

k ezk (φ
[ j−1]−φ[ j−1,+]).

(ii) At x j ,

u[ j,−] = δ
[ j]
−

√√√√ n∑
s=1

2c[ j]
s (1 − ezs (φ[ j]−φ[ j,−]

) − 2Q j (φ[ j] − φ[ j,−])
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where δ
[ j]
− = sgn(φ[ j] − φ[ j,−]); and the α-limit set of N [ j,−] is

α(N [ j,−]) = {(φ[ j,−], 0,C [ j,−], J , x j ) : all J } ⊂ Z j ,

with c[ j,−]
k = c[ j]

k ezk (φ
[ j]−φ[ j,−]).

2.2.2 Slow Dynamics for Regular Layers Over [xj−1, xj]

To obtain a singular orbit connecting Bj−1 and Bj , which determines J over [x j−1, x j ], we
now construct a regular layer � j on Z j between ω(N [ j−1,+]) and α(N [ j,−]).

For the slow dynamics, wewill follow the treatment in [44] (a refinement of that in [40] for
slow dynamics). It turns out the limiting slow system has the same form. The only difference
is that the slow manifold or an algebraic constraint is

n∑
s=1

zscs + Q j = 0

with a nonzero Q j over the interval [x j−1, x j ].
One rescales some dependent variables by introducing (p, q) as

u = εp,
n∑

s=1

zscs + Q j = −εq. (2.9)

Replacing (u, cn) with (p, q), system (2.1) becomes, for k = 1, 2, . . . , n − 1,

φ̇ = p, ε ṗ = q − ε
hw(w)

h(w)
p,

εq̇ =
( n−1∑

s=1

(zs − zn)zscs − znQ j − εznq

)
p + h−1(w)I ,

ċk = −pzkck − Jkh
−1(w), J̇ = 0, ẇ = 1,

(2.10)

where I = ∑n
s=1 zs Js . The limiting slow system of (2.10) is, for k = 1, 2, . . . , n − 1,

φ̇ = p, q = 0,

( n−1∑
s=1

(zs − zn)zscs − znQ j

)
p + h−1(w)I = 0,

ċk = −pzkck − Jkh
−1(w), J̇ = 0, ẇ = 1.

(2.11)

For this system, the slow manifold is

S j =
{
p = − h−1(w)I∑n−1

s=1 (zs − zn)zscs − znQ j
, q = 0

}
. (2.12)

On the slow manifold S j , system (2.11) reads, for k = 1, 2, . . . , n − 1,

φ̇ = − h−1(w)I∑n−1
s=1 (zs − zn)zscs − znQ j

,

ċk = h−1(w)I∑n−1
s=1 (zs − zn)zscs − znQ j

zkck − Jkh
−1(w),

J̇ = 0, ẇ = 1.

(2.13)
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Remark 2.2 If I = 0, then the solution of (2.13) is given by, for x ∈ [x j−1, x j ],

φ(x) = φ[ j−1,+] = φ[ j,−], J = C [ j−1,+] − C [ j,−]

H(x j ) − H(x j−1)
,

C(x) = C [ j−1,+] − J (H(x) − H(x j−1)), w(x) = x .

We will then assume I �= 0 in the following.

An observation is that, on the slow manifold S j where
∑n

s=1 zscs + Q j = 0,

n−1∑
s=1

(zs − zn)zscs − znQ j =
n∑

s=1

z2s cs > 0. (2.14)

Denote Vj = φ[ j−1,+] − φ[ j,−]. Then Vj I > 0 from (2.14) and φ-equation in (2.13). As
in [44], multiply h(w)Vj I−1 ∑n

s=1 z
2
s cs on the right-hand side of (2.13), which keeps the

same phase portrait, to get, in term of a new independent variable, say t ,

dφ

dt
= −Vj ,

dC

dt
= Vj DC,

n∑
s=1

zscs + Q j = 0,

dJ

dt
= 0,

dw

dt
= h(w)Vj I

−1bTC,

(2.15)

where b = (z21, z
2
2, . . . , z

2
n)

T and the matrix D is given by

D = � − I−1 JbT . (2.16)

It is easy to check that
∑n

s=1 zscs is a first integral of system (2.15). So the electroneutrality
with permanent charge Q j defines a level set of the first integral which is a representation of
the slow manifold.

System (2.15) is the form treated in [44] with Q j = 0. We now apply the result in [44] to
draw conclusions on regular layers and refer the readers to [44] for details. It’s known that,
corresponding to the electroneutrality condition on the slow manifold, σ = 0 is one zero of
g. Formula (2.17) and Theorem 3.1 in [44] give

Proposition 2.3 Let σ1, . . . , σp−1, σp = 0 be the distinct eigenvalues of D with algebraic

multiplicities s1, . . . , sp (s1 + s2 + . . . + sp = n). Then J [ j]
k = I [ j] f [ j]

k where

I [ j] = Vj

H(x j ) − H(x j−1)

∫ 1

0
bT eVj DzC [ j−1,+] dz,

f [ j]
k = 1

z2k

∏p
i=1(zk − σi )

si∏
1≤i≤n,i �=k(zk − σi )

for k = 1, 2, . . . , n.

(2.17)

For the given (φ[ j−1,+],C [ j−1,+]) and (φ[ j,−],C [ j,−]), let g[ j] : C → C be the mero-
morphic function defined as

g[ j](σ ) =:
n∑

s=1

z2s c
[ j,−]
s

zs − σ
− eVjσ

n∑
s=1

z2s c
[ j−1,+]
s

zs − σ
. (2.18)

It is shown in [44] that the eigenvalues σ j ’s of D satisfy

(a) if σ j /∈ {z1, z2, · · · , zn}, then σ j is a root of g[ j](σ ) = 0 with multiplicity s j ;
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(b) if σ j = zk for some k, then c[ j,−]
k = eVj zk c[ j−1,+]

k and σ j = zk is a root of g(σ ) = 0
with multiplicity s j − 1.

(c) all σ j ’s lie in the strip S = {x + iy : y ∈ (−π/|Vj |, π/|Vj |)}.

2.3 Matching for Singular Orbits Over theWhole Interval [0, 1]

Once a singular orbit �[ j−1,+] ∪� j ∪�[ j,−] over each subinterval [x j−1, x j ] is constructed,
we need to match those singular orbits in order to have a singular orbit on the whole interval
[0, 1]. As in [40], denote Jk’s by J [ j]

k ’s over the interval [x j−1, x j ], the matching conditions
are

u[ j,−] = u[ j,+] at each x j for j = 1, 2,

J [ j]
k = J [ j+1]

k for k = 1, . . . , n; j = 1, 2,
(2.19)

where u[ j,−] and u[ j,+] are given in Proposition 2.1 and J [ j]
k ’s are in Proposition 2.3.

For n = 3, thematching conditions (2.19) lead to the governing system for the preassigned
unknowns (φ[ j], c[ j]

k ) for j = 1, 2 and k = 1, 2, 3 in (2.3),

u[1,−] = u[1,+] at x1 ⇐⇒
3∑

s=1

c[1,−]
s =

3∑
s=1

c[1,+]
s + Q2(φ

[1] − φ[1,+]),

u[2,−] = u[2,+] at x2 ⇐⇒
3∑

s=1

c[2,+]
s =

3∑
s=1

c[2,−]
s + Q2(φ

[2] − φ[2,−]),

Jk := J [1]
k = J [2]

k = J [3]
k ,

(2.20)

where J [ j]
k ’s are provided in Proposition 2.3 and where, in terms of (φ[ j], c[ j]

k ) variables,
φ[ j,+] and φ[ j,−] are determined by

3∑
s=1

zsc
[ j]
s ezs (φ

[ j]−φ[ j,+]) + Q j+1 = 0,
3∑

s=1

zsc
[ j]
s ezs (φ

[ j]−φ[ j,−]) + Q j = 0,

and c[ j,+]
k and c[ j,−]

k are, in turn, given by

c[ j,+]
k = c[ j]

k ezk (φ
[ j]−φ[ j,+]), c[ j,−]

k = c[ j]
k ezk (φ

[ j]−φ[ j,−]).

3 Flux Ratios for (Small) Permanent Charge for n = 3

3.1 Comparative Effects of Permanent ChargeQwith Small |Q2|

In this paper, the main focus is to study the effects of small permanent charges on individual
flux and only treats the case I �= 0.

For the permanent charge Q = Q(x) in (A3) in the beginning of § 1.3, we will assume
now that |Q2| is small relative to lk’s and rk’s, and expand all unknown quantities in (2.20)
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in Q2 as follows, for j = 1, 2 and k = 1, 2, 3,

φ[ j] = φ
[ j]
0 + φ

[ j]
1 Q2 + O(Q2

2),

c[ j]
k = c[ j]

k0 + c[ j]
k1 Q2 + O(Q2

2),

Jk = Jk0 + Jk1Q2 + O(Q2
2).

(3.1)

The coefficients of the zeroth order and first order terms will be examined looking for the
dominating effects of the permanent charges on individual fluxes.

For this work, we are mainly interested in properties based on Jk up to O(Q2). With
expansions in (3.1), the flux ratio λk(Q) of the k-th ion species in (1.6) and the flux ratio
difference λi (Q) − λ j (Q) between the i-th and the j-th ion species are

λk(Q) = Jk(Q)

Jk(0)
= 1 + τk Q2 + o(Q2),

λi (Q) − λ j (Q) = τi j Q2 + o(Q2),

(3.2)

where, from (3.1),

τk = Jk1
Jk0

and τi j = τi − τ j . (3.3)

Therefore, comparative effects of Q on fluxes Ji and J j are reduced to the study of signs of
τi j , which are determined by boundary conditions and (α1, α2).

Note that, if Q2 > 0 and zi > z j , one might suspect that the permanent charge Q would
enhance the flux J j more than the flux Ji , that is, λi (Q) − λ j (Q) < 0, or equivalently, (zi −
z j )τi j ≤ 0. Likewise, if Q2 < 0 and zi > z j , then onemight expect that λi (Q)−λ j (Q) < 0,
or equivalently, (zi − z j )τi j ≤ 0. Thus, in either case of Q2 > 0 or Q2 < 0 with |Q2| small,
a question would be:

Is (zi − z j )τi j ≤ 0 ? (3.4)

This is indeed the case for n = 2 [35,41] as mentioned in the introduction. On the other
hand, for ionic flows involving three or more ion species, the answer to question (3.4) is not
always affirmative as commented in the introduction too. In fact, after some basic preparations
in this section, wewill show in Sect. 4 that the followings are possiblewith z1 > z2 > 0 > z3:

(i) τ23 > 0; (ii) τ12 > 0 and τ13 > 0 simultaneously; (iii) τ13 + τ23 > 0.

3.2 Expansions inQwith Small |Q2|

Let σ1, σ2, and σ3 = 0 be the eigenvalues of D where D is the matrix in (2.16). We will give
the detailed treatment for σ1 �= σ2 and the case of σ1 = σ2 can be handled by continuity. For
|Q2| � 1, let

σk(Q) = σk0 + σk1Q2 + O(Q2
2), D = D0 + D1Q2 + O(Q2

2).

Note that σk0’s depend on boundary conditions and σk1’s depend on boundary conditions as
well as (α1, α2). For easy of notation, we introduce

SL = l1 + l2 + l3, �L = z21l1 + z22l2 + z23l3, L(σ ) = z1z2z3SL + σ�L ;
SR = r1 + r2 + r3, �R = z21r1 + z22r2 + z23r3, R(σ ) = z1z2z3SR + σ�R .

(3.5)
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Under the boundary electroneutrality conditions, we write

g(σ ) = σγ (σ )

(σ − z1)(σ − z2)(σ − z3)
where γ (σ ) = eσV L(σ ) − R(σ ). (3.6)

Note that γ (0) = 0 if and only if SL = SR .
The next two lemmas are crucial for the study of flux ratios in this paper and they will be

established in Appendix (Sect. 6).

Lemma 3.1 If σ10 �= σ20, then γ ′(σk0) �= 0 and σk1 is given by

σk1 = 1

σk0γ ′(σk0)

3∏
s=1

(σk0 − zs)(e
σk0φ

[2]
0 − eσk0φ

[1]
0 ) if σk0 �= 0,

σk1 = − z1z2z3
γ ′(0)

(φ
[2]
0 − φ

[1]
0 ) = 2

g′′(0)
(φ

[2]
0 − φ

[1]
0 ) if σk0 = 0,

where φ
[ j]
0 is (uniquely) determined by

eT0 e
(V−φ

[ j]
0 )D0L − SL = α j g

′(0) if σ10σ20 �= 0,

eT0 �−1e(V−φ
[ j]
0 )D0L −

3∑
s=1

ls
zs

− (V − φ
[ j]
0 )SL = 1

2
α j g

′′(0) if σ10σ20 = 0.
(3.7)

We note that g′(0) = SR − SL and, if g′(0) = 0 (or equivalently, σ10σ20 = 0), then

g′′(0) = 2
3∑

s=1

rs − ls
zs

− 2V SL .

Lemma 3.2 Assume σ10 �= σ20 and σ10σ20 �= 0. One has

τk = Jk1
Jk0

= φ
[1]
0 − φ

[2]
0

g′(0)
− σ11

σ10
− σ21

σ20
+ σ11

σ10 − zk
+ σ21

σ20 − zk
,

τi j = σ11

σ10 − zi
+ σ21

σ20 − zi
− σ11

σ10 − z j
− σ21

σ20 − z j
.

(3.8)

The next result follows directly from Lemmas 3.1 and 3.2 .

Proposition 3.3 One has

τi j =Ti j (φ
[2]
0 ) − Ti j (φ

[1]
0 )

where, for a permutation {i, j, k} of {1, 2, 3} (the convention to be used in the rest),

(a) if σ10 �= σ20, then

Ti j (φ) = (zi − z j )(σ10 − zk)

σ10γ ′(σ10)
(eσ10φ − 1) + (zi − z j )(σ20 − zk)

σ20γ ′(σ20)
(eσ20φ − 1); (3.9)

(If σ j0 = 0, then the above formula is defined by applying L’Hopital rule.)
(b) if σ10 = σ20 = σ0, then

Ti j (φ) = 2(zi − z j )(σ0 − zk)

σ0γ ′′(σ0)

(
φeσ0φ − (eσ0φ − 1)

( γ ′′′(σ0)
3γ ′′(σ0)

+ 1

σ0
+ 1

zk − σ0

))
.

(If σ0 = 0, then the above formula is defined by applying L’Hopital rule.)
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Remark 3.4 If V = 0, then φ
[1]
0 = φ

[2]
0 = 0 (Proposition 2.1 in [18]), and hence, τi j = 0.

Thus, up to order O(Q2), λi (Q) = λ j (Q). In the sequel, we will assume V �= 0. In addition,
we make the following observations.

(a.) For a fixed boundary condition, φ[ j]
0 = φ

[ j]
0 (α j ) depends on α j through (3.7) so wemay

treat Ti j as a function of α. Also we will use τi j (α1, α2) whenever needed to emphasize
the dependance of τi j on (α1, α2).

(b.) If V > 0 (resp. V < 0), then φ0(x) is decreasing (resp. increasing) in x , and hence,
φ

[1]
0 > φ

[2]
0 (resp. φ[1]

0 < φ
[2]
0 ) (see, e.g., [44]).

We note a simple relation τ12 + τ23 = τ13, and end this discussion with a result that will
be used for Proposition 3.10.

Proposition 3.5 For V �= 0, the situation τ1 = τ2 = τ3 cannot occur. Each of the following
identities is equivalent to the above identities

(i) τ12 = τ23 = 0, (i i) τ12 = τ13 = 0, (i i i) τ13 = τ23 = 0.

Proof Suppose, on the contrary, that τ23 = τ12 = 0.
For σ10 �= σ20, Proposition 3.3 implies that, for k = 1 (associated to τ23 = 0) and k = 3

(associated to τ12 = 0),

eσ10φ
[2]
0 − eσ10φ

[1]
0

σ10γ ′(σ10)
(σ10 − zk) + eσ20φ

[2]
0 − eσ20φ

[1]
0

σ20γ ′(σ20)
(σ20 − zk) = 0 for k = 1, 3.

Since z1 �= z3, the two identities immediately give

eσ10φ
[2]
0 − eσ10φ

[1]
0

σ10γ ′(σ10)
= eσ20φ

[2]
0 − eσ20φ

[1]
0

σ20γ ′(σ20)
= 0,

and hence, φ[1]
0 = φ

[2]
0 , which happens only if V = 0.

Similarly, for σ10 = σ20 = σ0, Proposition 3.3 implies that, for k = 1 and k = 3,

(
φ

[2]
0 eσ0φ

[2]
0 − φ

[1]
0 eσ0φ

[1]
0 − (σ0γ

′′′(σ0)
3γ ′′(σ0)

+ 1
)eσ0φ

[2]
0 − eσ0φ

[1]
0

σ0

)
(σ0 − zk)

+ eσ0φ
[2]
0 − eσ0φ

[1]
0 = 0,

which, for both σ0 �= 0 and σ0 = 0, lead again to φ
[1]
0 = φ

[2]
0 . ��

3.3 Key Quantities and Preliminary Results

To characterize the monotonicity of Ti j (φ) and present preliminary results, it is convenient
to split the discussion into several cases and introduce some quantities. Since the results in
this section are prepared to be applied in Sect. 4 for a special case where σk0’s are real, we
will consider only this case in this work.

3.3.1 Case I: �10 �= �20 and �10, �20 ∈ R

In this case, the sign of

Ki j = (σ20 − zk)γ ′(σ10)
(σ10 − zk)γ ′(σ20)

(3.10)

determines monotonicity of Ti j (φ). In fact,
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Lemma 3.6 Assume V �= 0 and σ10 �= σ20.

(i) If Ki j ≥ 0, then Ti j (φ) is strictly monotone and zk is between σ10 and σ20.
(ii) If Ki j < 0, then Ti j (φ) has a unique critical point φ = Vi j given by

Vi j = 1

σ10 − σ20
ln(−Ki j ). (3.11)

Proof The quantity Ki j is real since σ10 and σ20 would be conjugate pair if they are complex.
A direct calculation gives

T ′
i j (φ) = (zi − z j )(σ10 − zk)eσ10φ

γ ′(σ10)
+ (zi − z j )(σ20 − zk)eσ20φ

γ ′(σ20)
.

If Ki j ≥ 0, then the two terms of T ′
i j (φ) have the same sign so T ′

i j (φ) has no zeros. For
Ki j < 0, T ′

i j (φ) = 0 has a unique solution φ = Vi j given in (3.11). ��
Now for the case where Ki j < 0 so that Vi j in (3.11) exists, let

θi j =

⎧⎪⎪⎨
⎪⎪⎩

1

g′(0)
eT0

(
e(V−Vi j )D0L − L

)
if σ10σ20 �= 0,

1

g′′(0)
eT0 �−1

(
e(V−Vi j )D0L − L − (V − Vi j )�L

)
if σ10σ20 = 0.

(3.12)

Lemma 3.7 If V > 0, then θi j is decreasing in Vi j ; if V < 0, then θi j is increasing in Vi j .
Furthermore, θi j ∈ [0, 1] if and only if Vi j lies between 0 and V .

Proof We will treat the case σ10σ20 �= 0 only. Set

θ(φ) = 1

g′(0)
eT0

(
e(V−φ)D0 L − L

)
.

Note that (z1, z2, z3)e(V−φ(x))D0 L = (z1, z2, z3)C(x) = 0 and H(1)F = −g′(0). Thus,

θ ′(φ) = − 1

g′(0)
eT0 D0e

(V−φ)D0 L = − 1

g′(0)

(
eT0 � − I−1FbT

)
e(V−φ)D0 L

= − 1

g′(0)

(
(z1, z2, z3)e

(V−φ)D0 L+ pg
g′(0)
H(1)I

bT e(V−φ)D0 L
)
=− 1

H(1)I
bT e(V−φ)D0 L.

The statement on monotonicity of θi j on Vi j then follows from I V > 0.
It is clear that if Vi j = V , then θi j = 0. If Vi j = 0, then

θi j = 1

g′(0)
eT0

(
eV D0L − L

)
= 1

SR − SL
eT0 (R − L) = 1.

This completes the proof. ��

Definition 3.8 For θi j ∈ [0, 1], define a function Pi j : [0, θi j ] → [θi j ,∞) as follows:
Pi j (α) = β if Ti j (β) = Ti j (α) (see the left panel of Fig. 1).

Our first main result is for the case where σ10 and σ20 are real and distinct.
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Fig. 1 Function Ti j on α and Pi j for case (ii) a in Proposition 3.9

Proposition 3.9 Assume σ10 > σ20. For V �= 0, one has

(i) if Ki j ≥ 0, then (zi − z j )τi j (α1, α2) < 0 for any 0 ≤ α1 ≤ α2 ≤ 1;
(ii) if Ki j < 0, then exactly one of the followings occurs

(a) when (zi − z j )
(σ10−zk )
γ ′(σ10) > 0,

τi j (α1, α2) =
{

< 0 for α1 < θi j and α2 < Pi j (α1)

> 0 for α1 > θi j or α2 > Pi j (α1);

(b) when (zi − z j )
(σ10−zk )
γ ′(σ10) < 0,

τi j (α1, α2) =
{

> 0 for α1 < θi j and α2 < Pi j (α1)

< 0 for α1 > θi j or α2 > Pi j (α1).

Proof For V �= 0, it can be shown that τi j (α, α) = 0 for any α ∈ [0, 1] and

∂α1τi j (α1, α2) = −dφ[1]
0

dα1
T ′
i j (φ

[1]
0 ), ∂α2τi j (α1, α2) = dφ[2]

0

dα2
T ′
i j (φ

[2]
0 ). (3.13)

Note that for V > 0,
dφ[1]

0
dα1

,
dφ[2]

0
dα2

< 0; for V < 0,
dφ[1]

0
dα1

,
dφ[2]

0
dα2

> 0. For σ10 > σ20 ∈ R, it
follows from Lemma 6.1 that for V > 0, γ ′(σ10) > 0 > γ ′(σ20); for V < 0, γ ′(σ10) < 0 <

γ ′(σ20).

(i) If Ki j ≥ 0, then, for V > 0 and σ10 > σ20, one has, from Lemma 3.6,

σ10 − zk
γ ′(σ10)

> 0,
σ20 − zk
γ ′(σ20)

≥ 0,

which leads to (zi − z j )T ′
i j (φ) > 0, and hence, (zi − z j )τi j (α1, α2) < 0 since φ

[1]
0 >

φ
[2]
0 .

Similarly, for V < 0, (zi − z j )T ′
i j (φ) < 0, and hence, (zi − z j )τi j (α1, α2) < 0 since

φ
[1]
0 < φ

[2]
0 .

123



Journal of Dynamics and Differential Equations

(ii) If Ki j < 0, then T ′
i j (Vi j ) = 0 and a direct calculation gives

∂α1α1τi j (θi j , θi j ) = −
(
dφ[1]

0

dα1

)2

T ′′
i j (Vi j ), ∂α2α2τi j (θi j , θi j ) =

(
dφ[2]

0

dα2

)2

T ′′
i j (Vi j ),

where

T ′′
i j (Vi j ) = (zi − z j )

(σ10 − zk)(σ10 − σ20)eσ10Vi j

γ ′(σ10)
.

It follows from

∂α1α1τi j (θi j , θi j )∂α2α2τi j (θi j , θi j ) < 0, ∂α1α2τi j (α1, α2) = ∂α2α1τi j (α1, α2) = 0

that (α1, α2) = (θi j , θi j ) is the unique saddle point. Let α1 < α2 ≤ θi j ≤ β1 < β2.

(a) For T ′′
i j (Vi j ) > 0, that is (zi − z j )

(σ10−zk )
γ ′(σ10) > 0, we have

∂α1α1τi j (θi j , θi j ) < 0 < ∂α2α2τi j (θi j , θi j ),

which leads to ∂α1τi j (α1, α2) > 0 and ∂α2τi j (β1, β2) > 0. Thus, τi j (α1, α2) < 0 <

τi j (β1, β2).
(b) For T ′′

i j (Vi j ) < 0, that is (zi − z j )
(σ10−zk )
γ ′(σ10) < 0, we have

∂α1α1τi j (θi j , θi j ) > 0 > ∂α2α2τi j (θi j , θi j ),

which leads to ∂α1τi j (α1, α2) < 0 and ∂α2τi j (β1, β2) < 0. Thus, τi j (α1, α2) > 0 >

τi j (β1, β2).
Moreover, it follows from the implicit function theorem that τi j (α1, α2) = 0 has a
solution α2 = Pi j (α1) ≥ θi j for α1 ∈ [0, θi j ] satisfying θi j = Pi j (θi j ) (see Fig. 1). The
proof is completed. ��

Proposition 3.10 Graphs of P12, P23 and P13 in � do not intersect with each other.

Proof Suppose, at least two of the graphs, say of P23 and P12 would intersect at a point
(α1, α2) ∈ �. One would have τ23(α1, α2) = τ12(α1, α2) = 0, which contradicts to the
statement in Proposition 3.5. ��

3.3.2 Case II: �10 = �20 := �0 ∈ R

In this case, one has

Lemma 3.11 Assume σ10 = σ20 := σ0 ∈ R. For V �= 0, one has

(i) If σ0 = zk , then Ti j (φ) is strictly monotone.
(ii) If σ0 �= zk , then Ti j (φ) has a unique critical point φ = Vi j given by

Vi j = V (V L(σ0) + 3�L)

3(V L(σ0) + 2�L)
+ 1

zk − σ0
. (3.14)

Proof It follows from part (b) of Proposition 3.3 that

T ′
i j (φ) = 2(zi − z j )(σ0 − zk)

γ ′′(σ0)

(
φ − γ ′′′(σ0)

3γ ′′(σ0)

)
+ 2(zi − z j )

γ ′′(σ0)
.
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Thus, if σ0 = zk , then Ti j is strictly monotone. If σ0 �= zk , then Ti j has a unique critical
point

Vi j = γ ′′′(σ0)
3γ ′′(σ0)

+ 1

zk − σ0
,

which, together with (3.6), gives (3.14). ��
For σ0 �= zk where Vi j in (3.14) exists, let

θi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

g′(0)
eT0

(
e(V−Vi j )D0L − L

)
, σ0 �= 0,

1

g′′(0)
eT0 �−2

(
e(V−Vi j )D0L −

2∑
s=0

1

s! (V − Vi j )
s�s L

)
, σ0 = 0.

(3.15)

Lemma 3.12 One has that θi j is monotone in Vi j and θi j ∈ [0, 1] if and only if Vi j lies
between 0 and V .

Proof It can be proved in the similar way as that of Lemma 3.7. ��
If θi j ∈ [0, 1], we will define a function Pi j : [0, θi j ] → [θi j ,∞) in the same way as in

Definition 3.8.

Proposition 3.13 Assume σ10 = σ20 := σ0 �= 0. For V �= 0, one has

(i) if σ0 = zk , then (zi − z j )τi j (α1, α2) < 0 for any 0 ≤ α1 ≤ α2 ≤ 1;
(ii) if σ0 �= zk , then exactly one of the followings occurs

(a) when (zi − z j )
(σ0−zk )
γ ′′(σ0) > 0,

τi j (α1, α2) =
{

< 0 for α1 < θi j and α2 < Pi j (α1)

> 0 for α1 > θi j or α2 > Pi j (α1);
(b) when (zi − z j )

(σ0−zk )
γ ′′(σ0) < 0,

τi j (α1, α2) =
{

> 0 for α1 < θi j and α2 < Pi j (α1)

< 0 for α1 > θi j or α2 > Pi j (α1).

Proof Note that for V > 0, γ ′′(σ0) > 0; for V < 0, γ ′′(σ0) < 0.

(i) If σ0 = zk , then

T ′
i j (φ) = 2(zi − z j )eσ0φ

γ ′′(σ0)
,

which leads toV (zi−z j )T ′
i j (φ) > 0 so Ti j (φ) ismonotone and (zi−z j )τi j (α1, α2) < 0.

(ii) If σ0 �= zk , then T ′
i j (Vi j ) = 0 and

T ′′
i j (Vi j ) = 2(zi − z j )(σ0 − zk)eσ0φ

γ ′′(σ0)
.

The same proof for (ii) of Proposition 3.9 can be applied to completes the proof. ��
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3.4 Limiting Behavior as z1 → z2

To motivate possible features of τi j , we look at the “limiting” behavior as z1 → z2 of two
ion species.

Proposition 3.14 Forfixedboundary conditions (moreprecisely, for fixed V and (l1, l2, r1, r2)
with (l3, r3) from electroneutrality), if z1 → z2, then τ13 < 0 and τ23 < 0.

Proof Recall that

γ (ζ) = eσV L(σ ) − R(σ ), γ ′(σ ) = VeσV L(σ ) + eσV�L − �R,

where L(σ ) = �L(σ − ηl) and R(σ ) = �R(σ − ηr ) with

ηl = −z1z2z3
SL
�L

∈ (z2, z1), ηr = −z1z2z3
SR
�R

∈ (z2, z1).

Thus, lim
z1→z2

γ (σ ) = 0 has two roots σ10 = − 1
V ln l1+l2

r1+r2
and σ20 = z2. If σ10 �= σ20, then

γ ′(σ10) = V R(σ10) = V�R(σ10 − z2) �= 0 and γ ′(σ20) = eσ20V�L − �R �= 0.

It follows from (i) in Proposition 3.9 that K13 = K23 = 0, and hence τ13 < 0 and τ23 < 0.
Similarly, if σ10 = σ20 = z2, then by (i) in Proposition 3.13, we know τ13 < 0 and τ23 < 0.

��
Remark 3.15 In Proposition 3.14, the assumption of “Fixed boundary conditions” indicates
that the formal limiting process as z1 → z2 that leads to τ13 < 0 and τ23 < 0 is not uniform
in boundary conditions; in fact, as long as z1 �= z2, there are boundary conditions so that
τ13 > 0 or τ23 > 0.

In Sect. 4, we will show that, it is possible that, τ13 > 0, or τ23 > 0, or even, τ13+τ23 > 0.
On the other hand, we believe that τ13 > 0 and τ23 > 0 cannot occur simultaneously.

4 Equi-Chemical-Potential-Difference: � = l1
r1

= l2
r2

= l3
r3

In this section, we will conduct a detailed study for the case of equi-chemical-potential-
difference: ρ = l1

r1
= l2

r2
= l3

r3
. As mentioned in the introduction and at the end of Sect. 3,

even for this simple setup, there are a number of new and unintuitive phenomena. Due to the
symmetry in Remark 1.1, we will consider ρ ≤ 1 only.

In this case of equi-chemical-potential-difference, the function γ in (3.6) becomes

γ (σ ) =
(
eσV − 1

ρ

)(
z1z2z3SL + σ�L

)
,

where SL , SR , �L and �R are defined in (3.5). Hence, its two roots are

σ10 = − ln ρ

V
, σ20 = −z1z2z3

SL
�L

= −z1z2z3
SR
�R

∈ (z2, z1). (4.1)

One also has

γ ′(σ10) = V

ρ

(
z1z2z3SL − �L ln ρ

V

)
= −V�L

ρ

(
σ20 − σ10

)
,

γ ′(σ20) = �L

(
eσ20V − 1

ρ

)
= �L

ρ

(
e(σ20−σ10)V − 1

)
.
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Remark 4.1 Note that for V > 0, zk > σ10 iff μk(0) − μk(1) > 0 iff Jk > 0; for V < 0,
zk > σ10 iff μk(0) − μk(1) < 0 iff Jk < 0.

In the following, we will examine as systematically as possible behaviors of τi j ’s. The
reason is, as commented in the introduction, that not much specifics about permanent charge
effects on fluxes are known.We hope to reveal some significant characteristics from our study
for this specific cases. It turns out, even for this special cases, extremely rich behaviors are
already present. The advantage that more or less explicit dependence of relative quantities in
terms of system parameters is quite useful for the study as a first step.

4.1 Case�10 = �20 = �0

Note that σ0 ∈ (z2, z1). It follows from (4.1) that σ10 = σ20 if and only if

V = V ∗ := �L ln ρ

z1z2z3SL
.

Since we consider, WLOG, ρ ≤ 1 and V �= 0, one has ρ < 1, and hence, V = V ∗ > 0.
It follows from from z3 < z2 < σ10 = σ0 < z1 and Remark 4.1 that

J1 > 0, J2 < 0, J3 < 0. (4.2)

We first determine conditions for Vi j ∈ [0, V ] where Vi j ’s are in (3.14).

Lemma 4.2 Assume V = V ∗ and ρ < 1. One has V13 < V12 < V /2 < V23. Moreover,

(i) 0 < V23 < V if and only if

ln ρ <
2z2z3SL

z2z3SL + �L
= 2z2z3SL

(z1 − z2)(z1 − z3)l1
< 0; (4.3)

(ii) 0 < V13 < V if and only if

ln ρ < − 2z1z3SL
z1z3SL + �L

= 2z1z3SL
(z1 − z2)(z2 − z3)l2

< 0; (4.4)

(iii) 0 < V12 < V if and only if

ln ρ < − 2z1z2SL
z1z2SL + �L

= − 2z1z2SL
(z1 − z3)(z2 − z3)l3

< 0. (4.5)

Proof Since L(σ0) = ρR(σ0) = 0, it follows from (3.14) that

Vi j = V (V L(σ0) + 3�L)

3(V L(σ0) + 2�L)
+ 1

zk − σ0
= 1

2
V + 1

zk − σ0
.

Thus, V13 < V12 < V /2 < V23. Moreover, 0 < Vi j < V if and only if

−1

2
V <

1

zk − σ0
<

1

2
V .

For (i), we have V23 > 0 and for V23 < V ,

1

2
V >

1

z1 − σ0
,

which leads to (4.3). The other cases can be obtained similarly. ��
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Recall, from Lemma 3.12, that Vi j ∈ (0, V ) implies θi j ∈ (0, 1).

Theorem 4.3 Assume V = V ∗ and ρ < 1. Suppose the conditions for Vi j ∈ (0, V ) in
Lemma 4.2. One has,

(i) τ23 > 0 for α1 < θ23 and α2 < P23(α1); τ23 < 0 for α1 > θ23 or α2 > P23(α1);
(ii) τ13 < 0 for α1 < θ13 and α2 < P13(α1); τ13 > 0 for α1 > θ13 or α2 > P13(α1);
(iii) τ12 < 0 for α1 < θ12 and α2 < P12(α1); τ12 > 0 for α1 > θ12 or α2 > P12(α1).

Proof Note that,

σ0 − zk
γ ′′(σ0)

= − μδ
k

2V 2�Leσ0V
,

where μδ
k = μk(0) − μk(1) is the transmembrane electrochemical potential of the kth ion

species. For the case under consideration, one has μδ
3 < μδ

2 < 0 < μδ
1, and hence,

(z2 − z3)
σ0 − z1
γ ′′(σ0)

< 0, (z1 − z3)
σ0 − z2
γ ′′(σ0)

> 0, (z1 − z2)
σ0 − z3
γ ′′(σ0)

> 0.

The conclusion then follows from Proposition 3.13. ��
As a consequence of Proposition 3.10, Lemma 4.2 and Theorem 4.3, one has

Corollary 4.4 Assume V = V ∗ and ρ < 1. The situation that τ13 > 0 and τ23 > 0 cannot
occur simultaneously. Hence, the situation that τ12 > 0 and τ23 > 0 cannot occur simulta-
neously since τ13 = τ12 + τ23. Furthermore, if either τ12 > 0 or τ13 > 0, then τ23 < 0, and
hence, in either case, τ12 = τ13 − τ23 > τ13.

Recall that (α1, α2) ∈ � := {0 ≤ α1 ≤ α2 ≤ 1}. It is obvious that τi j is continuous on
� and the sign of τi j changes at (α1, Pi j (α1)). Assume V = V ∗ and the conditions for 0 <

Vi j < V in Lemma 4.2. Since 0 < V13 < V12 < V23 < V , one has 0 < θ23 < θ12 < θ13 < 1
and graphs of P12, P13 and P23 on � are illustrated in Fig. 2. Note that by Proposition 3.10,
graphs of Pi j ’s do not intersect.

Corollary 4.5 Note that τ12 = τ13 − τ23, the sign of τ12 depends on the order of τ13 and τ23.
It follows from Theorem 4.3 and Fig. 2 that

(i) τ23 > 0 > τ13 for α1 < θ23 and α2 < P23(α1);
(ii) 0 > τ23 > τ13 for P23(α1) < α2 < P12(α1) or θ23 < α1 < α2 < P12(α1);
(iii) 0 > τ13 > τ23 for P12(α1) < α2 < P13(α1) or θ12 < α1 < α2 < P13(α1);
(iv) τ12 + τ23 = τ13 > 0 > τ23 for α1 > θ13 or α2 > P13(α1).

Figure 3 contains numerical simulation profiles of concentrations, electrical potential, and
electrochemical potential for one set of parameter values under this case.

Figure 4 includes numerical simulations for λ j (Q2) for Q2 = 2Q0 near 0. The figure on
the right hand side has two implications: (a) in general, τ j (0±) �= 0 and (b) τ12 = τ1−τ2 > 0
is realized for the choice of L and R indicated.

Numerical results presented in Figs. 3 and 4 here as well as in Fig. 7 in next subsection
have been obtained using MMPDElab, A MATLAB package for adaptive mesh movement
and finite element computation in 1D, 2D, and 3D, developed by Huang [28].

In Corollary 4.5, for (ii) and (iii), τ13 + τ23 < 0; for (i) and (iv), the sign of τ13 + τ23 is not
clear. We now show that τ13 + τ23 may be positive, which justifies the last assertion made in
Remark 3.15. Set

τ c3 = τ13 + τ23

2
. (4.6)
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Fig. 2 Graphs of functions P12,
P13 and P23 in domain � when
V = V ∗ and the conditions for
0 < Vi j < V in Lemma 4.2 hold.
The sign patterns are for the signs
of components of (τ12, τ13, τ23).
For example, in the left bottom
corner region where α1 < θ23
and α2 < P23(α1), the patten
“− − +” means τ12 < 0, τ13 < 0
and τ23 > 0
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Fig. 3 Profiles of concentrations (left), electric potential (middle) and electrochemical potentials (right) with
Q0 = −.0008, L = (.01, .001, .021), R = (10/3, 1/3, 7), and V = V ∗ ≈ 5.6276

Fig. 4 L = (.01, .001, .021), R = (10/3, 1/3, 7), V = V ∗ ≈ 5.6276: λ j (2Q0) where λ1(2Q0) > λ2(2Q0)

for Q0 > 0 and λ1(2Q0) < λ2(2Q0) for Q0 < 0 (left); τ j (0
±) �= 0 and τ12 = τ1 − τ2 > 0 (case (iii) in

Corollary 4.5) (right)
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If we formally take z2 → z1 (or z1 → z2), then τ c3 < 0 from Proposition 3.14.
Let

zc3 = z1(z2 − z3) + z2(z1 − z3)

z1 + z2 − 2z3
∈ (z2, z1),

and, for σ0 �= zc3, let

V c
3 = 1

2
V + 1

zc3 − σ0
and θc3 = SL

SR − SL

(
eσ0(V−V c

3 ) − 1
)

.

Lemma 4.6 Assume V = V ∗ and ρ < 1.

(i) If z1l1 > z2l2, then V c
3 < V if and only if

ln ρ <
2σ0

σ0 − zc3
= − 2z1z2z3SL(z1 + z2 − 2z3)

(z1 − z2)(z1 − z3)(z2 − z3)(z2l2 − z1l1)
< 0. (4.7)

(ii) If z1l1 < z2l2, then 0 < V c
3 if and only if

ln ρ < − 2σ0
σ0 − zc3

= 2z1z2z3SL(z1 + z2 − 2z3)

(z1 − z2)(z1 − z3)(z2 − z3)(z2l2 − z1l1)
< 0. (4.8)

Proof Recall that, for V = V ∗, one has σ10 = σ20 = σ0 and

Ti j (φ) = 2(zi − z j )(σ0 − zk)

σ0γ ′′(σ0)

(
φeσ0φ − (eσ0φ − 1)

(
γ ′′′(σ0)
3γ ′′(σ0)

+ 1

σ0
+ 1

zk − σ0

))
.

Therefore,

T c
3 (φ) := T13(φ) + T23(φ)

2

= (z1 + z2 − 2z3)(σ0 − zc3)

σ0γ ′′(σ0)

(
φeσ0φ − (eσ0φ − 1)

(
γ ′′′(σ0)
3γ ′′(σ0)

+ 1

σ0
+ 1

zc3 − σ0

))
.

Since

dT c
3

dφ
(φ) = (z1 + z2 − 2z3)(σ0 − zc3)e

σ0φ

γ ′′(σ0)

(
φ − γ ′′′(σ0)

3γ ′′(σ0)
− 1

zc3 − σ0

)
,

we have

dT c
3

dφ
(V c

3 ) = 0 where V c
3 = 1

2
V + 1

zc3 − σ0
.

A direct calculation gives

σ0 − zc3 = (z1 − z2)(z1 − z3)(z2 − z3)(z2l2 − z1l1)

(z1 + z2 − 2z3)�L
.

If z1l1 > z2l2, then σ0 < zc3 < z1; if z1l1 < z2l2, then z2 < zc3 < σ0; Applying the same
procedure of the proof in Lemma 4.2, the statements then follow. ��

The next result is a direct consequence of the above.

Theorem 4.7 Assume V = V ∗ and ρ < 1. There is a function Pc
3 : [0, θc3 ] → [θc3 ,+∞) so

that,

(i) if z1l1 > z2l2 and (4.7) holds, then τ c3 > 0 (with τ23 > 0 > τ13) for α1 < θc3 and
α2 < Pc

3 (α1); τ c3 < 0 for α1 > θc3 or α2 > Pc
3 (α1);
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Fig. 5 Graphs of function Pc
3 in domain � when V = V ∗. Let OB be any curve in � intersecting Pc

3 at
A. From O to A to B, if z1l1 > z2l2 and (4.7) holds, then τ c3 changes form positive to zero to negative; if
z1l1 < z2l2 and (4.8) holds, then τ c3 changes form negative to zero to positive

(ii) if z1l1 = z2l2, then τ c3 < 0 for any (α1, α2) ∈ �;
(iii) if z1l1 < z2l2 and (4.8) holds, then τ c3 < 0 for α1 < θc3 and α2 < Pc

3 (α1); τ c3 > 0 (with
τ13 > 0 > τ23) for α1 > θc3 or α2 > Pc

3 (α1).

Proof Note that if z1l1 > z2l2, then V c
3 < V implies 0 < V23 < V c

3 < V , and hence,
0 < θc3 < θ23 < 1. Similarly, if z1l1 < z2l2, then V c

3 > 0 implies 0 < V c
3 < V13 < V , and

hence, 0 < θ13 < θc3 < 1. The conclusion follows from Proposition 3.13 directly. ��
Note that J1 > 0 > J2 from (4.2). In some sense, one of the cation species is preparing to

“sacrifice” for the other: Under one set of conditions, the first cation species sacrifices so that
τ23 > 0 and under some other set of conditions, the second cation species sacrifices so that
τ13 > 0. Also, τ c3 > 0 could be interpreted as that the total “gain” is more than the sacrifice
that one of the cation made so that τ c3 = (τ13 + τ23)/2 > 0. One asks naturally: Can J1 and
J2 have the same sign yet τ c3 > 0? The answer is affirmative and is justified in next part (see
Remark 4.16).

4.2 �10 �= �20

Note that σ10 �= σ20 if and only if V �= V ∗. If V �= V ∗, then, from (3.10),

Ki j = (σ20 − zk)γ ′(σ10)
(σ10 − zk)γ ′(σ20)

= −σ20 − zk
σ10 − zk

· (σ20 − σ10)V

e(σ20−σ10)V − 1
. (4.9)

In particular,

Lemma 4.8 Assume V �= V ∗ and ρ ≤ 1.

(i) For V < 0, one has K13 > 0 > K23, and

V < V23 < 0 if and only if T ′
23(V ) < 0 < T ′

23(0);
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Fig. 6 Signs of Ki j and Jk0 for V �= V ∗ and ρ < 1. Also, as V → V ∗ one always has Ki j < 0 in limit, and
hence, Vi j exists as in the case σ10 = σ20

Furthermore, K12 < 0 if and only if V < − ln ρ
z3

< 0, and hence,

V < V12 < 0 if and only if T ′
12(V ) > 0 > T ′

12(0).

(ii) For V > 0,

(a) if 0 < V ≤ V ∗ (necessarily, ρ < 1), then K12, K13 < 0, and

V > V12, V13 > 0 if and only if T ′
12(V ), T ′

13(V ) > 0 > T ′
12(0), T

′
13(0);

Furthermore, K23 < 0 if and only if − ln ρ
z1

< V < V ∗, and hence,

V > V23 > 0 if and only if T ′
23(V ) < 0 < T ′

23(0);
(b) if 0 ≤ V ∗ < V , then K12, K23 < 0, and

V > V12, V23 > 0 if and only if T ′
12(0), T

′
23(V ) < 0 < T ′

12(V ), T ′
23(0);

Furthermore, K13 < 0 if and only if V ∗ < V < − ln ρ
z2

, and hence,

V > V13 > 0 if and only if T ′
13(V ) > 0 > T ′

13(0).

Proof It is easy to see that

(σ20 − σ10)V

e(σ20−σ10)V − 1
> 0.

The statements on sign of Ki j follow from (4.9) and detailed statements in (i) and (ii) follow
directly from (4.1) and (4.9).

For V < 0, we have σ10 < σ20 and
σ20−z1
γ ′(σ20) > 0, which leads to that T ′

23(φ) is increasing.
Since T ′

23(V23) = 0, it follows form Lemma 3.6 that V < V23 < 0 if and only if T ′
23(V ) <

0 < T ′
23(0). The other cases can be obtained similarly. ��

From above result, we know the order of θi j , 0 and 1 depends on signs of T ′
i j (V ) and

T ′
i j (0). Note that by Proposition 3.3, T ′

i j (V ) and T ′
i j (0) can be rewritten as

T ′
i j (V ) = (zi − z j )�L Li j (V )

V γ ′(σ10)γ ′(σ20)
e(σ10+σ20)V , T ′

i j (0) = (zi − z j )�R Ri j (V )

V γ ′(σ10)γ ′(σ20)
,

with

Li j (φ) = (zkφ + ln ρ)(
1

ρ
e−σ20φ − 1) + φ(σ20φ + ln ρ)(zk − σ20),

Ri j (φ) = (zkφ + ln ρ)(1 − ρeσ20φ) + φ(σ20φ + ln ρ)(zk − σ20).

For signs of τ23, we can establish the following result.
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Theorem 4.9 Assume V �= V ∗ and ρ ≤ 1. Then, for V < 0, R23(V ) = 0 has a unique root
V R
23; for V > 0, L23(V ) = 0 has a unique root V L

23 ∈ (− ln ρ
z1

,+∞), and V L
23 < V ∗ if and

only if (4.3) holds. Furthermore,

(i) if V < V R
23, then τ23 < 0 for α1 < θ23 and α2 < P23(α1); τ23 > 0 for α1 > θ23 or

α2 > P23(α1);
(ii) if V R

23 < V < V L
23, then τ23 < 0 for any (α1, α2) ∈ �;

(iii) if V L
23 < V , then τ23 > 0 for α1 < θ23 and α2 < P23(α1); τ23 < 0 for α1 > θ23 or

α2 > P23(α1).

In order to prove Theorem 4.9, we need to determine signs of T ′
23(V ) and T ′

23(0) to check
if θ23 ∈ (0, 1).

Lemma 4.10 Assume V �= V ∗ and ρ ≤ 1. One has

(i) If V < 0, then T ′
23(V ) < 0 and R23(V ) = 0 has a unique root V R

23 such that for
V ≤ V R

23, T
′
23(0) ≥ 0 and 0 < θ23 < 1; for V R

23 < V < 0, T ′
23(0) < 0 and 1 < θ23.

(ii) If V > 0, then T ′
23(0) > 0 and L23(V ) = 0 has unique root V L

23 such that for 0 < V <

− ln ρ
z1

, T ′
23(V ) > 0; for − ln ρ

z1
< V ≤ V L

23, T
′
23(V ) ≥ 0 and θ23 < 0; for V L

23 < V ,
T ′
23(V ) < 0 and 0 < θ23 < 1.

In particular, if (4.3) holds, then V L
23 < V ∗.

Proof Note that R′′′
23(φ) = 0 only has one root and

R′′′
23(−∞) = 0+, R′′′

23(+∞) < 0, R′′
23(−∞) > 0 > R′′

23(V
∗), R′′

23(+∞).

It is direct to obtain R′′
23(φ) = 0 has a unique root φR′′

23 ∈ (−∞, V ∗). Since

R′
23(−∞), R′

23(+∞) < 0 = R′
23(V

∗),

we know that R′
23(φ) = 0 has two different roots φR′

23 < V ∗. It follows from

R23(−∞) > 0 = R23(V
∗) > R23(0), R23(+∞),

that R23(φ) = 0 has two different roots V R
23 < 0 < V ∗ such that for φ ∈ (−∞, V R

23),
R23(φ) > 0, for φ ∈ (V R

23, V
∗) ∪ (V ∗,+∞), R23(φ) < 0. Since lim

V→V ∗ T
′
23(0) > 0, we have

for V < V R
23, T

′
23(0) > 0 and V23 < 0; for V R

23 < V < 0, T ′
23(0) < 0 and 0 < V23; for

0 < V , T ′
23(0) > 0 and V23 < 0 (if V23 exists).

Note that L ′′′
23(φ) = 0 only has one root and

L ′′′
23(−∞) > 0, L ′′′

23(+∞) = 0−, L ′′
23(−∞) < 0 < L ′′

23(+∞).

Then L ′′
23(φ) = 0 has a unique root φL ′′

23 satisfying that if (4.3) holds, that is L ′′
23(V

∗) > 0,
then φL ′′

23 < V ∗, if L ′′
23(V

∗) < 0, then φL ′′
23 > V ∗. Now we only consider (4.3) holds. Since

L ′
23(−∞), L ′

23(+∞) > 0 = L ′
23(V

∗),

we know that L ′
23(φ) = 0 has two different roots φL ′

23 < V ∗. It follows from

L23(−∞), L23(0), L23(− ln ρ

z1
) < 0 = L23(V

∗) < L23(+∞),

that L23(φ) = 0 has two different roots V L
23 < V ∗ ∈ (− ln ρ

z1
,+∞) such that for φ ∈

(−∞, V L
23), L23(φ) < 0, forφ ∈ (V L

23, V
∗)∪(V ∗,+∞), L23(φ) > 0. Since lim

V→V ∗ T
′
23(V ) <
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0, we have for V < 0, T ′
23(V ) < 0 and V23 < V ; for 0 < V < V L

23, T
′
23(V ) > 0 and V23 > V

(if V23 exists); for V L
23 < V , T ′

23(V ) < 0 and V23 < V .
An application of Lemma 4.8 completes the proof. ��
Theorem 4.9 can be established easily from Proposition 3.9 and Lemma 4.10. Similarly,

results on signs of τ13 and τ12 are as follows.

Theorem 4.11 Assume V �= V ∗, ρ ≤ 1 and (4.4) holds. Then R13(V ) = 0 has two different
roots V R1

13 ∈ (0, V ∗) and V R2
13 ∈ (V ∗,− ln ρ

z2
). Furthermore,

(i) if V < V R1
13 , then τ13 < 0 for any (α1, α2) ∈ �;

(ii) if V R1
13 < V < V R2

13 , then τ13 < 0 for α1 < θ13 and α2 < P13(α1); τ13 > 0 for α1 > θ13
or α2 > P13(α1);

(iii) if V R2
13 < V , then τ13 < 0 for any (α1, α2) ∈ �.

Theorem 4.12 Assume V �= V ∗ and ρ ≤ 1. Then for V < 0, L12(V ) = 0 has a unique root
V L
12 ∈ (−∞,− ln ρ

z3
), for V > 0, R12(V ) = 0 has a unique root V R

12, and V R
12 < V ∗ if and

only if (4.5) holds. Furthermore,

(i) if V < V L
12, then τ12 > 0 for α1 < θ12 and α2 < P12(α1); τ12 < 0 for α1 > θ12 or

α2 > P12(α1);
(ii) if V L

12 < V < V R
12, then τ12 < 0 for any (α1, α2) ∈ �;

(iii) if V R
12 < V , then τ12 < 0 for α1 < θ12 and α2 < P12(α1); τ12 > 0 for α1 > θ12 or

α2 > P12(α1).

Remark 4.13 (i) When (4.4) holds, (4.5) holds automatically and V R1
13 > V R

12.
(ii) Note that without (4.4), it is possible that either R13(V ) ≤ 0 or R13(V ) = 0 has two

roots in (0,− ln ρ
z2

), which are vary complex towrite the conditions clearly and concisely.
However, no matter whether (4.4) holds or not, it can be shown that τ13 > 0 and τ23 > 0
can never occur simultaneously.

In particular,

Corollary 4.14 Assume ρ ≤ 1 and (4.4), (4.3) hold. Suppose

max{V R1
13 , V L

23} < V < V R2
13 .

Then statements (i)-(iv) in Corollary 4.5 hold true for this case of σ10 �= σ20.

In the previous part, we have shown that τ c3 > 0 while J10 > 0 > J20. Here we will
show that τ c3 > 0 while J10 J20 > 0 under some boundary conditions and for some choices
of (α1, α2). Let

Lc
3(φ) = (zc3φ + ln ρ)(

1

ρ
e−σ20φ − 1) + φ(σ20φ + ln ρ)(zc3 − σ20),

Rc
3(φ) = (zc3φ + ln ρ)(1 − ρeσ20φ) + φ(σ20φ + ln ρ)(zc3 − σ20),

Kc
3 = (σ20 − zc3)γ

′(σ10)
(σ10 − zc3)γ

′(σ20)
, V c

3 = 1

σ10 − σ20
ln(−Kc

3), θc3 = SL
g′(0)

(
eσ0(V−V c

3 ) − 1
)

.

Theorem 4.15 Assume V �= V ∗, ρ ≤ 1 and z1l1 > z2l2. Then for V < 0, Rc
3(V ) = 0 has

a unique root V cR
3 , for V > 0, Lc

3(V ) = 0 has a unique root V cL
3 ∈ (− ln ρ

zc3
,+∞), and

V cL
3 < V ∗ if and only if (4.7) holds. Furthermore,
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Fig. 7 Numerical examples with L = (0.0001, 0.01, 0.0102), R = (0.1, 10, 10.2), and V = 3.4. Left: τ c3 < 0
with τ3 > τ1 > 0 > τ2, particularly, τ23 < τ13 < 0 for α1 < θc3 and α2 < Pc

3 (α1); Right: τ c3 > 0 for
α1 > θc3 or α2 > Pc

3 (α1)

(i) if V < V cR
3 , then τ c3 < 0 for α1 < θc3 and α2 < Pc

3 (α1); τ c3 > 0(with τ23 > 0 > τ13 >

τ12) for α1 > θc3 or α2 > Pc
3 (α1);

(ii) if V cR
3 < V < V cL

3 , then τ c3 < 0 for any (α1, α2) ∈ �;
(iii) if V cL

3 < V , then τ c3 > 0 (with τ23 > 0 > τ13 > τ12) for α1 < θc3 and α2 < Pc
3 (α1);

τ c3 < 0 for α1 > θc3 or α2 > Pc
3 (α1).

Proof Denote

T c
3 (φ) := T13(φ) + T23(φ)

2
.

For V �= V ∗, one has σ10 �= σ20 and

dT c
3

dφ
(V ) = (z1 + z2 − 2z3)�L Lc

3(V )

V γ ′(σ10)γ ′(σ20)
e(σ10+σ20)V ,

dT c
3

dφ
(0) = (z1 + z2 − 2z3)�R Rc

3(V )

V γ ′(σ10)γ ′(σ20)
.

Note that for z1l1 > z2l2, σ0 < zc3 < z1. Adopting the same procedure of the proof in
Theorem 4.9, signs of τ c3 can be completed directly.

Note that if V13, V23 and V c
3 exist, then V13 < V23 < V c

3 and hence for V < 0, θ23 < θc3 ,
for V > 0, θc3 < θ23 < θ13. It can be shown that for V < V cR

3 < 0, then τ13 < 0 < τ23
for α1 > θc3 or α2 > Pc

3 (α1); for 0 < V cL
3 < V , then τ13 < 0 < τ23 for α1 < θc3 and

α2 < Pc
3 (α1). ��

In Fig. 7, for the set of boundary conditions L , R and V , θc3 ∈ (0, 1) exists. But, for a
choice of (α1, α2) with α1 < θc3 and α2 < Pc

3 (α1), one has τ c3 < 0 with τ3 > τ1 > 0 > τ2 as
in the left panel. On the other hand, for a choice of (α1, α2) with α1 > θc3 or α2 > Pc

3 (α1),
one has τ c3 > 0 as shown in the right panel.

Remark 4.16 (i) Note that for max{V cL
3 ,− ln ρ

z2
} < V < +∞, J10 > 0 and J20 > 0; for

V < V cR
3 < 0, J10 < 0 and J20 < 0. Therefore, it is indeed possible that τ c3 > 0 while

J10 J20 > 0 (see the claim at the end of Sect. 4.1).
(ii) As for V �= V ∗, ρ ≤ 1 and z1l1 < z2l2, if Rc

3(− ln ρ
z1

) > 0, then Rc
3(V ) = 0 has

two different roots V cR1
3 ∈ (0,− ln ρ

z1
) and V cR2

3 ∈ (− ln ρ
z1

,− ln ρ
zc3

). In particular, if

V cR1
3 < V < − ln ρ

z1
, then τ c3 > 0(with τ12 > τ13 > 0 > τ23) for α1 > θc3 or

α2 > Pc
3 (α1), and J10, J20 < 0.
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Table 1 Signs in each row occur
simultaneously for same set of
boundary conditions. “+ or −”
means either sign is possible
while the other signs in the row
are fixed

τ12 τ23 τ13 τ12 − τ23 τ12 + τ13 τ13 + τ23

– + – – – + or –

– – – + or – – –

+ – – + + or – –

+ – + + + + or –

(iii) By Theorems 4.7 and 4.15 and (ii) above, it can be shown that τ c3 > 0 can hold for
either J10 J20 < 0 or J10 J20 > 0. In particular, if τ c3 > 0 holds, then for z1l1 > z2l2,
τ23 > 0 > τ13 > τ12; for z1l1 < z2l2, τ12 > τ13 > 0 > τ23.

5 A Short Summary

We give a summary of some results from this study and provide discussions on possible
further directions with a couple of questions.

In this work we focus on the relative effects of permanent charges on individual fluxes
for the case with three ion species. The characteristic used for this measure is in terms of the
flux ratio λk’s; more precisely, we consider, for small Q2, the quantities τi j ’s (state definition
and implications of signs of τi j ).

Recall the relation τ12 + τ23 = τ13. Each of the situation about signs in Table 1 can be
realized.

It is natural to ask
Question 1. Can τ13 > 0 and τ23 > 0 occur simultaneously?

We believe it cannot. If it is the case, then the above table includes all possible situations
for signs of τi j ’s.

It follows from τ12 + τ23 = τ13 that, if τ12 > 0 and τ23 > 0, then τ13 > 0. Therefore, it
is more “difficult” to have τ12 > 0 and τ23 > 0 than to have τ13 > 0 and τ23 > 0. Thus, one
may ask

Question 2. Can τ12 > 0 and τ23 > 0 occur simultaneously?
Note that an affirmative answer to Question 2 implies an affirmative answer to Question

1. One may indeed have τ12 > 0 and τ13 > 0 as claimed in the table.
Recall in [41] that, for n = 2 with z1 > 0 > z2, if Q(x) > 0 (not necessarily piecewise

constant and not necessarily small), then λ1(Q) < λ2(Q). Accordingly, Questions 1 and
2 can be asked for general case of permanent charges Q(x) with one fixed sign. It would
be more interesting to know what happens to λi (Q) − λ j (Q) for sign changing permanent
charges Q(x), even for n = 2.

6 Appendix: Proofs of Lemmas 3.1 and 3.2

In view of limiting slow system (2.15), one has

C [ j,−] = e(φ[ j−1,+]−φ[ j,−])DC [ j−1,+]. (6.1)
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Recall that Jk = I fk . It follows from Proposition 3.13 and Corollary 3.14 in [44] that

I = z1z2z3
σ1σ2

F and F = − d
dσ g

[ j](0)
H(x j ) − H(x j−1)

if σ1σ2 �= 0, (6.2)

and

I = − z1z2z3
σ1

n∑
s=1

Js
zs

and
n∑

s=1

Js
zs

= −1

2

d2

dσ 2 g
[ j](0)

H(x j ) − H(x j−1)
if for σ2 = 0,

where g[ j](σ ) is defined in (2.18).
Herewe should note that once σ1 and σ2 are determined, then the other unknown quantities

in (2.20) can be obtained directly. Therefore, we will firstly determine the zeroth order and
first order terms of σ1 and σ2.

6.1 Expansion of�1 and�2

Denote

γ [ j](σ ) = g[ j](σ )
1

σ

3∏
s=1

(σ − zs).

It can be shown that all the zeros and removable poles of g[ j](σ ) are the zeros of γ [ j](σ ).
Therefore, σ1 and σ2 are uniquely determined by γ [ j](σ ) = 0. The advantages are that
γ [ j](σ ) is sufficiently smooth and we need not discuss whether σ is zeros or removable poles
of g[ j](σ ).

6.1.1 Zeroth Order of �1 and �2.

Recall, from (3.6), that for Q2 = 0,

g(σ ) =
3∑

s=1

z2s rs
zs − σ

− eVσ
3∑

s=1

z2s ls
zs − σ

, γ (σ ) = g(σ )

σ

3∏
s=1

(σ − zs) = eσV L(σ ) − R(σ ).

One has that σ10 and σ20 are the unique solution of γ (σ ) = 0 in the strip

S = {z = x + iy : y ∈ (−π/|V |, π/|V |)}.
Lemma 6.1 Assume σ10 > σ20. If V > 0, then γ ′(σ10) > 0 > γ ′(σ20). If V < 0, then
γ ′(σ10) < 0 < γ ′(σ20).

Proof Note that

γ ′(σ ) = eσV (V L(σ ) + �L) − �R, γ ′′(σ ) = VeσV (V L(σ ) + 2�L).

It follows from γ ′′(σ ) = 0 that γ ′(σ ) < 0. For V > 0,

lim
σ→−∞ γ ′(σ ) = −�R, lim

σ→+∞ γ ′(σ ) = +∞, lim
σ→±∞ γ (σ ) = +∞,

then γ ′(σ10) > 0 > γ ′(σ20). For V < 0,

lim
σ→−∞ γ ′(σ ) = +∞, lim

σ→+∞ γ ′(σ ) = −�R, lim
σ→±∞ γ (σ ) = −∞,

then γ ′(σ10) < 0 < γ ′(σ20). The proof is completed. ��
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6.1.2 First Order of �1 and �2.

In this part,wewill give the conditions of determining thefirst orderσ11 andσ21 forσ10 �= σ20,
and the explicit formulas will be given in Sect. 6.3.

Note that γ (σ ) := γ (σ, y[ j]) depends on y[ j] = (φ[ j−1,+],C [ j−1,+], φ[ j,−],C [ j,−])T ,
which can be expanded as y[ j] = y[ j]

0 + y[ j]
1 Q2 + O(Q2

2) with

y[ j]
0 = (φ

[ j−1,+]
0 ,C [ j−1,+]

0 , φ
[ j,−]
0 ,C [ j,−]

0 )T , y[ j]
1 = (φ

[ j−1,+]
1 ,C [ j−1,+]

1 , φ
[ j,−]
1 ,C [ j,−]

1 )T .

Set γσ (σ, y[ j]) = ∂
∂σ

γ (σ, y[ j]) and γy(σ, y[ j]) = ∇y[ j]γ (σ, y[ j]).

Proposition 6.2 For σ10 �= σ20 ∈ C, σk1 is uniquely determined by

σk1 = −γy(σk0, y
[1]
0 )y[1]

1

γσ (σk0, y
[1]
0 )

= −γy(σk0, y
[2]
0 )y[2]

1

γσ (σk0, y
[2]
0 )

= −γy(σk0, y
[3]
0 )y[3]

1

γσ (σk0, y
[3]
0 )

. (6.3)

Proof For σ10 �= σ20 ∈ C, we expand γ (σk, y[ j]) as

γ (σk, y
[ j]) = γ (σk0, y

[ j]
0 ) +

(
γσ (σk0, y

[ j]
0 )σ1 + γy(σk0, y

[ j]
0 )y[ j]

1

)
Q2 + O(Q2

2).

Since γ (σk, y[ j]) = γ (σk0, y
[ j]
0 ) = 0, γσ (σk0, y

[1]
0 ) �= 0, γσ (σk0, y

[2]
0 ) �= 0, and

γσ (σk0, y
[3]
0 ) �= 0, one has that σk1 is uniquely determined by the linear system

γ1(σk1, y
[1]) = γ1(σk1, y

[2]) = γ1(σk1, y
[3]) = 0, (6.4)

which is equivalent to (6.3). ��
Next, we will determine the zeroth order and first order terms of φ[ j], c[ j]

k and Jk .

6.2 Zeroth Order Solution of (2.20)

For the zeroth order terms, we will first use the results of limiting fast system in Theorem 2.1
and the first two equations in (2.20) to express the intermediate intermediate such as φ

[1,−]
0 ,

c[1,−]
k0 , etc., in terms of φ

[1]
0 , c[1]

k0 , etc. Then, we can obtain the zeroth order solution of (2.20)
by the results of limiting slow system.

Proposition 6.3 Suppose V �= 0. The zeroth order solution of (2.20) satisfies

c[ j,−]
k0 = c[ j,+]

k0 = c[ j]
k0 , φ

[ j,−]
0 = φ

[ j,+]
0 = φ

[ j]
0 , u[ j,−]

0 = u[ j,+]
0 = 0. (6.5)

Furthermore, (i) if σ10σ20 �= 0, then φ
[ j]
0 is uniquely determined by

eT0 e
(V−φ

[ j]
0 )D0L − SL = α j g

′(0),

and

C [ j]
0 = e(V−φ

[ j]
0 )D0 L, Jk0 = I0 fk0, I0 = z1z2z3

σ10σ20
F0, F0 = − g′(0)

H(1)
. (6.6)

(ii) If σ10 �= 0 and σ20 = 0, then φ
[ j]
0 is uniquely determined by

eT0 �−1e(V−φ
[ j]
0 )D0 −

3∑
s=1

ls
zs

− (V − φ
[ j]
0 )SL = α j g

′′(0),
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and

C [ j]
0 = e(V−φ

[ j]
0 )D0L, Jk0 = I0 fk0, I0 = − z1z2z3

σ10

3∑
s=1

Js0
zs

,

3∑
s=1

Js0
zs

= − g′′(0)
2H(1)

,

Proof It follows from Theorem 2.1 that the zeroth order in Q2 are as follows

c[ j,−]
k0 = c[ j]

k0 e
−zk (φ

[ j,−]
0 −φ

[ j]
0 ), u[ j,−]

0 = sgn(φ[ j]
0 − φ

[ j,−]
0 )

√√√√ 3∑
s=1

2c[ j]
s0 (1 − ezs (φ

[ j]
0 −φ

[ j,−]
0 ),

c[ j,+]
k0 = c[ j]

k0 e
−zk (φ

[ j,+]
0 −φ

[ j]
0 ), u[ j,+]

0 = sgn(φ[ j,+]
0 − φ

[ j]
0 )

√√√√ 3∑
s=1

2c[ j]
s0 (1 − e

zs (φ
[ j]
0 −φ[ j,+])

0 ).

Then (6.5) can be proved directly by the matching condition u[ j,−]
0 = u[ j,+]

0 .
Next, we only prove the case σ10σ20 �= 0, the other case can be obtained similarly. By

(6.1) and (6.2), we have

C [ j]
0 = e(V−φ

[ j]
0 )D0L, Jk0 = I0 fk0, I0 = z1z2z3

σ10σ20
F0,

F0 = SL − eT0 C
[1]
0

H(x1)
= eT0 C

[1]
0 − eT0 C

[2]
0

H(x2) − H(x1)
= eT0 C

[2]
0 − SR

H(1) − H(x2)
,

which leads to

F0 = SL − SR
H(1)

= − g′(0)
H(1)

, α j g
′(0) = eT0 C

[ j]
0 − SL .

The proof is completed. ��

6.3 First Order Solution of (2.20)

For the first order terms, we will first express the intermediate variables such as φ
[1,−]
1 , c[1,−]

k1 ,

etc., in terms of zeroth order terms and φ
[1]
1 , c[1]

k1 , etc.

Lemma 6.4 One has, for k = 1, 2, 3 and j = 1, 2,

φ
[ j,−]
1 = φ

[ j]
1 − 1

2
∑3

s=1 z
2
s c

[ j]
s0

, c[ j,−]
k1 = c[ j]

k1 + zkc
[ j]
k0

2
∑3

s=1 z
2
s c

[ j]
s0

, u[ j,−]
1 = 1

2
√∑3

s=1 z
2
s c

[ j]
s0

,

φ
[ j,+]
1 = φ

[ j]
1 + 1

2
∑3

s=1 z
2
s c

[ j]
s0

, c[ j,+]
k1 = c[ j]

k1 − zkc
[ j]
k0

2
∑3

s=1 z
2
s c

[ j]
s0

, u[ j,+]
1 = 1

2
√∑3

s=1 z
2
s c

[ j]
s0

.

Proof Here we only prove the case j = 1, the proof of j = 2 is similar. Recall that system
(2.6) has four nontrivial first integrals given by, for k = 1, 2, 3,

Hk = cke
zkφ, H4 = 1

2
u2 −

3∑
s=1

cs + Q jφ. (6.7)
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Substituting (3.1) into (6.7) and expanding in Q2 to obtain, it follows from Lemma 6.3
that for the first order in Q2,

c[1,−]
k1 = c[1]

k1 − zkc
[1]
k0 (φ

[1,−]
1 − φ

[1]
1 ), u[1,−]

0 u[1,−]
1 =

3∑
s=1

(c[1]
s1 − c[1,−]

s1 ) = 0,

c[1,+]
k1 = c[1]

k1 − zkc
[1]
k0 (φ

[1,+]
1 − φ

[1]
1 ), u[1,+]

0 u[1,+]
1 =

3∑
s=1

(c[1]
s1 − c[1,+]

s1 ) + φ
[1,+]
0 − φ

[1]
0 = 0,

which leads to

φ
[1,−]
1 = φ

[1]
1 +

∑3
s=1 zsc

[1]
s1∑3

s=1 z
2
s c

[1]
s0

, φ
[1,+]
1 = φ

[1]
1 + 1 + ∑3

s=1 zsc
[1]
s1∑3

s=1 z
2
s c

[1]
s0

,

provided by
∑3

s=1 zsc
[1,−]
s1 = ∑3

s=1 zsc
[1,+]
s1 + 1 = 0. Then we have

c[1,−]
k1 = c[1]

k1 − zkc
[1]
k0

∑3
s=1 zsc

[1]
s1∑3

s=1 z
2
s c

[1]
s0

, c[1,+]
k1 = c[1]

k1 − zkc
[1]
k0

1 + ∑3
s=1 zsc

[1]
s1∑3

s=1 z
2
s c

[1]
s0

.

In order to determine u[1,−]
1 and u[1,+]

1 , we expand (6.7) up to Q2
2 terms to get

c[1,−]
k2 = c[1]

k2 − zk
(
c[1,−]
k1 φ

[1,−]
1 − c[1]

k1 φ
[1]
1

) − 1

2
z2kc

[1]
k0

(
(φ

[1,−]
1 )2 − (φ

[1]
1 )2

)
− zkc

[1]
k0

(
φ

[1,−]
2 − φ

[1]
2

)
,

c[1,+]
k2 = c[1]

k2 − zk
(
c[1,+]
k1 φ

[1,+]
1 − c[1]

k1 φ
[1]
1

) − 1

2
z2kc

[1]
k0

(
(φ

[1,+]
1 )2 − (φ

[1]
1 )2

)
− zkc

[1]
k0

(
φ

[1,+]
2 − φ

[1]
2

)
,

1

2
(u[1,−]

1 )2 + u[1,−]
0 u[1,−]

2 =
3∑

s=1

(c[1]
s2 − c[1,−]

s2 ),

1

2
(u[1,+]

1 )2 + u[1,+]
0 u[1,+]

2 =
3∑

s=1

(c[1]
s2 − c[1,+]

s2 ) + (φ
[1,+]
1 − φ

[1]
1 ),

which arrives at

u[1,−]
1 = sgn(φ[1]

1 − φ
[1,−]
1 )

√
(
∑3

s=1 zsc
[1]
s1 )2√∑3

s=1 z
2
s c

[1]
s0

, u[1,+]
1 = sgn(φ[1,+]

1 − φ
[1]
1 )

√
(1 + ∑3

s=1 zsc
[1]
s1 )2√∑3

s=1 z
2
s c

[1]
s0

.

According to the matching condition u[1,−]
1 = u[1,+]

1 we have
∑3

s=1 zsc
[1]
s1 = − 1

2 . The proof
is completed. ��
Proof of Lemma 3.1. Set φ[3]

0 = 0. It follows from Proposition 6.3 and Lemma 6.4 that

3∑
j=1

eσk0φ
[ j]
0 γy(σk0, y

[ j]
0 )y[ j]

1 = 1

σk0

3∏
s=1

(σk0 − zs)(e
σk0φ

[1]
0 − eσk0φ

[2]
0 ).

Since

γ (σk0) =
3∑
j=1

eσk0φ
[ j]
0 γ (σk0, y

[ j]
0 ),
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it follows from γ(σk0, y
[ j]
0 ) = 0 that

3∑
j=1

eσk0φ
[ j]
0 γσ (σk0, y

[ j]
0 ) = γ ′(σk0).

The expression for σk1 in Lemma 3.1 follows directly from (6.3). ��
Proof of Lemma 3.2. Since

∑3
s=1 c

[ j,−]
s1 = ∑3

s=1 c
[ j,+]
s1 = ∑3

s=1 c
[ j]
s1 , it follows from (6.2)

that

F1 = −
∑3

s=1 c
[1]
s1

H(x1)
= −

∑3
s=1 c

[2]
s1 − ∑3

s=1 c
[1]
s1 + (φ

[1]
0 − φ

[2]
0 )

H(x2) − H(x1)
=

∑3
s=1 c

[2]
s1

H(1) − H(x2)
,

which leads to F1 = −φ
[1]
0 −φ

[2]
0

H(x3)
. For σ10 �= σ20, a direct calculation gives

τk = Jk1
Jk0

= I1
I0

+ fk1
fk0

,
I1
I0

= F1
F0

− σ11

σ10
− σ21

σ20
.

The proof is completed. ��
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