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Abstract

In this work, we study shear flows of a fluid layer between two solid
blocks via a liquid-crystal type model proposed in [C. H. A. Cheng, et
al., A liquid-crystal model for friction, PNAS 21 (2007), 1-5] for an
understanding of frictions. A characterization on the existence and mul-
tiplicity of steady-states is provided. Stability issue of the steady-states
is examined mainly focusing on bifurcations of zero eigenvalues. The sta-
bility result suggests that this simple model exhibits hysteresis, and it is
supported by a numerical simulation.
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1 Introduction

In this work, we study a liquid-crystal type model for friction of a fluid layer
between two solid blocks, particularly, for the case of geologic fault, proposed
in [3]. The model is motivated by the Ericksen-Leslie continuum theory for
nematic liquid-crystals ([7, 10]). The state variables of nematic liquid-crystals
are the velocity field together with a director field. The latter is an attempt
to take into consideration of the micro-geometry of the molecules forming the
material; in particular, for nematic liquid-crystals, they are treated as rod-like
particles. The model in [3] is a simplified version for liquid-crystals but, at very
basic level, mimics the nematic liquid-crystals continuum system of Ericksen-
Leslie.

We begin with a brief account of the model and refer the readers to [3] for
more details and [7, 10, 2, 4] for the continuum theory of “real” nematic liquid-
crystal formulation. Consider a fluid layer of prescribed thickness between two
solid blocks with the blocks sliding in opposite directions at a prescribed relative
slip velocity. The material of the fluid layer will be treated as rod-like liquid-
crystals, in particular, the state of a material element is determined by its
spatial location and the direction of the rod. The following continuum model
was proposed in [3] (see the reference for a derivation and discussions).

ut + (u · ∇)u = div(v(r)∇u)− 1

ρ
∇p, in Ω (1.1)

rt +∇r · u−∇u · r = δ∆r, in Ω (1.2)

where u is the velocity of the fluid, r is the director field, ρ is the density, v(r)
is the kinematic viscosity, and p is the pressure, δ is the relaxation parameter,
and Ω denotes the region bounded by the two solid blocks.

The domain Ω is taken as Ω = (−∞,∞) × (0, L) with coordinates (x, y).
Without loss of generality, we take L = 1. Assume the horizontal pressure
gradient to be zero so that the flow is driven by the imposed slip velocity ū
of the upper boundary of the channel while the lower boundary can be set
still. Let u = (u1(x, y), u2(x, y)) and r = (r1(x, y), r2(x, y)). We recall further
simplifications assumed in [3]. It is assumed that

u1(x, y) = u(y), u2 = 0; r1(x, y) = r(y), r2 = 1.

Under this assumption and with v(r) = v(r), one obtains a one-dimensional
version of the model:

ut = (v(r)uy)y, rt = δryy + uy, for y ∈ (0, 1), (1.3)

with the boundary conditions

u(0, t) = 0, u(1, t) = ū; r(0, t) = r(1, t) = 0. (1.4)
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The kinematic viscosity v(r) is assumed to depend on the director field r via a
model

v(r) = α(θ)v1 + (1− α(θ))v0

for some decreasing function α with α(0) = 1 and α(π/2) = 0 and 0 < v0 < v1,
where θ is the angle of r from the vertical. The function α(θ) determines the
type of frictions modeled. In [3], the authors introduced the above model (1.1)
and (1.2), and used numerical simulations to examine the behavior of solutions
of (1.3) and (1.4) that allow them to compare with the empirical rate-and-state
law.

In this paper, we consider a general v(r) and assume

0 < v0 ≤ v(r) ≤ v1, v′(r) ≤ 0 and

either v′(r) = 0 for large r or lim
r→∞

(v′(r))2

v′′(r)
= µ0.

(1.5)

We remark that the existence of the limit in the assumption (1.5) implies im-
plicitly that v′′(r) 6= 0 for large r and, it turns out µ0 = 0 (see Lemma 2.3).
We will then first examine steady-state solutions of (1.3) and (1.4). This is
rather easy and we are able to give a complete characterization on the exis-
tence and multiplicity of steady-states. Stability issue of the steady-states is
then examined, particularly, for cases where multiple steady-states exist. We
identify conditions on ū so that zero is an eigenvalue for the linearization of a
steady-state associated to ū and study the bifurcation of the zero eigenvalue
for nearby ū. Quite interestingly, our stability result suggests that this simple
model possesses hysteresis; more precisely, when one applies dynamic boundary
conditions ū(t) in two manners, one with slowly increasing ū(t) from zero to
large, and the other in the reversal way, the solution of (1.3) and (1.4) for the
second setup is not the reverse of the first.

The paper is organized as follows. A characterization (Theorem 2.2) on the
existence and multiplicity of steady-state solutions of (1.3) and (1.4) is provided
in Section 2 followed by an example of v(r) for which multiple steady-states
exist. In Section 3, we apply the energy estimate to establish the L2 linear
stability of steady-states with small ū (Theorems 3.1). Section 4 is devoted to
the study of zero-eigenvalue and its bifurcation of steady-state solutions. An
explicit condition (Theorem 4.6) on steady-states that possess a zero eigenvalue
and a key formula (Proposition 4.9) that determines the bifurcation of the zero
eigenvalue are given. Section 5 is devoted to the derivation of the formula.
The stability result suggests a mechanism for a hysteresis phenomenon for this
model problem. A numerics is presented in Section 6 to support and illustrate
the expected hysteresis phenomenon.
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2 Existence and multiplicity of steady-states

In this section, we will characterize the existence and multiplicity of steady-
state solutions of (1.3) and (1.4) under the assumption (1.5) on the kinematic
viscosity v.

For definiteness, we assume ū > 0 in (1.4). The steady-state problem of
(1.3) and (1.4) is, for some positive constant M2 (see (2.7)),

v(r)u′ =M2, δr′′ + u′ = 0, y ∈ (0, 1)

u(0) = 0, u(1) = ū > 0, r(0) = r(1) = 0,
(2.6)

where prime denotes the derivative with respect to y.
It follows that

u(y) = u(0) +M2

∫ y

0

1

v(r(s))
ds.

In view of the boundary conditions u(0) = 0 and u(1) = ū > 0, we have

M2 = ū

{∫ 1

0

1

v(r(y))
dy

}−1
> 0. (2.7)

Set

f(r) =

∫ r

0

1

v(τ)
dτ. (2.8)

It is clear that f is strictly increasing. Let g be the inverse function of f . The
following lemma is a simple consequence of (1.5).

Lemma 2.1. f(0) = g(0) = 0, f(∞) = g(∞) = ∞, f ′(r) = 1/v(r) > 0,
f ′′(r) = −v′(r)/v2(r) ≥ 0; g′(s) = v(g(s)) ∈ [v0, v1], g

′′(s) ≤ 0.

Define a function

D(β) = β

∫ 1

0

g′(βt)√
1− t

dt for β > 0. (2.9)

The existence and multiplicity result for steady-states is

Theorem 2.2. For any ū > 0, the set of solutions of the boundary value problem
(2.6) is in one-to-one correspondence with the set of solutions β of ū = 4δD(β).
In particular, there always exists at least one solution.

Proof. The steady-state problem (2.6) reduces to

r′′ +
M2

δv(r)
= 0, r(0) = r(1) = 0, (2.10)
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Figure 1: The phase portrait of system (2.10) in the (r, r′)-plane.

subject to the condition (2.7). For any fixed M2 > 0, equation (2.10) is a
Newtonian with the potential M2f(r)/δ or with the Hamilitonian

H(r, r′) =
1

2
(r′)2 +

M2

δ
f(r), (2.11)

where f(r) is given in (2.8). The phase portrait is sketched in Figure 1.
We claim that, if r(y) is a solution of the boundary value problem (2.10),

then r(y) ≥ 0 for y ∈ (0, 1), r(y) is symmetric about y = 1/2 and r′(1/2) =
0. In fact, it follows from the equation in (2.10) that r(y) is strictly concave
downward. The boundary condition r(0) = r(1) = 0 then implies that r(y) > 0
for y ∈ (0, 1) and there is a unique y∗ ∈ (0, 1) so that r′(y∗) = 0. Set r(y∗) = α
and r1(y) = r(2y∗ − y). Then r1(y) satisfy the second-order equation in (2.10)
and the initial conditions r1(y

∗) = r(y∗) = α and r′1(y
∗) = −r′(y∗) = 0. By

uniqueness of initial value problems, we have r(y) = r1(y); in particular, r1(1) =
r(2y∗ − 1) = r(1) = 0. Since r(y) = 0 implies y = 0 or y = 1, we have either
2y∗− 1 = 1 or 2y∗− 1 = 0; that is, either y∗ = 1 or y∗ = 1/2. We thus conclude
y∗ = 1/2 since y∗ ∈ (0, 1), and hence, r(y) = r1(y) = r(1− y).

It now follows from (2.11), r(1/2) = α and r′(1/2) = 0 that

1

2
(r′)2 +

M2

δ
f(r) =

M2

δ
f(α),

and hence, for y ∈ (0, 1/2), r′(y) ≥ 0 and

r′ =

√
2

δ
M
√
f(α)− f(r) or Mdy =

√
δ

2

dr√
f(α)− f(r)

. (2.12)
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Integrate from y = 0 to y = 1/2 to get

M =
√

2δ

∫ α

0

dr√
f(α)− f(r)

.

Note that r′(0) =
√

2δ−1M
√
f(α) and∫ 1

0

dy

v(r(y))
=2

∫ 1/2

0

dy

v(r(y))
= − 2δ

M2

∫ 1/2

0

r′′(y)dy

=− 2δ

M2
(r′(1/2)− r′(0)) =

2δ

M2
r′(0) =

2
√

2δ

M

√
f(α).

The relation (2.7) then imposes that

ū = 2M
√

2δ
√
f(α) = 4δ

√
f(α)

∫ α

0

dr√
f(α)− f(r)

.

Let β = f(α) or equivalently α = g(β). In terms of β, we have,

M =
√

2δ

∫ β

0

g′(s)√
β − s

ds =
√

2δβ1/2

∫ 1

0

g′(βt)√
1− t

dt, (2.13)

ū =4δβ1/2

∫ β

0

g′(s)√
β − s

ds = 4δβ

∫ 1

0

g′(βt)√
1− t

dt = 4δD(β). (2.14)

It follows that, given any ū > 0, if β > 0 is a solution of (2.14), then there is
a steady-state solution. It is also clear from the construction of the steady-
state solution and the monotonicity of f(r) that different β values provide
different steady-state solutions. Therefore, the set of steady-states is in one-
to-one correspondence with the set of solutions β of equation (2.14).

Since 0 < v0 ≤ g′(s) ≤ v1 from Lemma 2.1, one has D(β) → 0 as β → 0
and D(β)→∞ as β →∞. Thus, for any ū > 0, there exists at least one β > 0
such that (2.14) is satisfied. This completes the proof.

Next, we provide a condition on ū so that the corresponding boundary value
problem (2.6) has a unique solution and an example of v(r) for which the bound-
ary value problem (2.6) has multiple solutions for a range of ū.

Lemma 2.3. Assumption (1.5) implies µ0 = 0.

Proof. Assume, on the contrary, that µ0 6= 0. If µ0 < 0, then the existence

of lim
r→∞

(v′(r))2

v′′(r)
= µ0 implicitly implies that, for some large r0, v

′′(r) ≤ 0 if

r ≥ r0 and v′(r0) < 0. It follows that v′(r) ≤ v′(r0) < 0, and hence, v(r) ≤
v(r0) + (r − r0)v

′(r0) → −∞ as r → ∞ that contradicts to v(r) ≥ v0 > 0.

Therefore, µ0 > 0. Denote, for r > r0,
(v′(r))2

v′′(r)
= ρ(r). Then ρ(r) → µ0 as
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r → ∞. Assume ρ(r) ≥ µ0/2 for r ≥ r∗ for some r∗ > r0. Solve the equation
ρ(r)(v′)′ = (v′)2 to get, for r ≥ r∗,

v′(r) = − 1∫ r
r∗

1
ρ(τ)

dτ − 1
v′(r∗)

.

Hence,

v(r) = v(r∗)−
∫ r

r∗

1∫ s
r∗

1
ρ(τ)

dτ − 1
v′(r∗)

ds.

It follows from, for r ≥ r∗, ρ(r) ≥ µ0/2 that∫ r

r∗

1

ρ(τ)
dτ ≤ 2

µ0

(r − r∗).

Therefore,

v(r) ≤ v(r∗)−
∫ r

r∗

1
2
µ0

(s− r∗)− 1
v′(r∗)

ds→ −∞ as r →∞.

The latter contradicts to v0 ≤ v(r) ≤ v1. We thus conclude µ0 = 0.

Corollary 2.4. Assume (1.5). There exist 0 < β1 < β2 such that D′(β) > 0
for 0 < β < β1 and for β > β2. Hence, for ū ∈ (0, 4δD(β1)) ∪ (4δD(β2),∞),
the boundary value problem (2.6) has a unique solution.

Proof. Note that

D′(β) =

∫ 1

0

g′(βt)√
1− t

dt+ β

∫ 1

0

tg′′(βt)√
1− t

dt.

The existence of β1 follows from that g′ ≥ v0 > 0 and |g′′| is bounded.
From g′(s) = v(g(s)), we have

dg

v(g)
= ds or

∫ g(z)

0

dr

v(r)
= z.

Therefore,

zg′′(z) = zvr(g(z))g′(z) = vr(g(z))v(g(z))

∫ g(z)

0

1

v(r)
dr.

If v(r) = 0 for large r in (1.5), then limz→+∞ (g′(z) + zg′′(z)) = v0 > 0. For
the other case in (1.5),

lim
z→+∞

(g′(z) + zg′′(z)) =v0 + lim
z→∞

(
vr(g(z))v(g(z))

∫ g(z)

0

1

v(r)
dr

)

=v0 − lim
g→∞

v(g)v2r(g)/vrr(g)

v2r(g)/vrr(g) + v(g)
= v0 > 0.
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One checks that, for any continuous function q(t),

lim
β→∞

∫ 1

0

q(βt)√
1− t

dt = 2 lim
t→∞

q(t)

if the latter limit exists. Therefore,

lim
β→∞

D′(β) = lim
β→∞

∫ 1

0

g′(βt) + βtg′′(βt)√
1− t

dt = 2 lim
z→+∞

(g′(z) + zg′′(z)) > 0.

The existence of β2 > 0 with the desired property follows directly.

Example. We end this section with an example of v(r) for which ū = 4δD(β)
is a cubic-like function. We set δ = 1 and choose a piecewise viscosity function

v(r) =


1, 0 ≤ r < 1

(1 + 9(r − 1)8)−1, 1 ≤ r < 2

0.1, 2 ≤ r.

(2.15)

This cubic ū(α) has a local maximum ūmax ≈ 12.84 and local minimum ūmin ≈
10.98, Figure 2. For ū ∈ (umin, umax) there are three steady-state solutions
which bifurcate from a unique solution as ū is varied across the local extrema.

Figure 2: A cubic-like ū(β) for v(r) in the example. Note that the horizontal
axis is labeled by α = g(β) instead of β.
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3 Linear stability for small ū

In this section, we use energy methods to establish the linear stability of steady-
states with small ū.

Let (u∗, r∗) = (u∗(y), r∗(y)) be a steady-state of the problem (1.3) and (1.4)
with u∗(1) = ū. The linearization of the problem (1.3) and (1.4) along (u∗, r∗)
is

Ut =
(
v(r∗)Uy + u∗yvr(r

∗)R
)
y
, Rt = δRyy + Uy, (3.16)

with U(t, 0) = U(t, 1) = R(t, 0) = R(t, 1) = 0.

Theorem 3.1. For small ū, (u∗, r∗) is linearly exponentially stable in L2; more
precisely, for K = π2δ−1v−10 , if ū is small enough, then there exists ρ > 0 such
that ∫ 1

0

(KU2(t, y) +R2(t, y))dy ≤ e−ρt
∫ 1

0

(KU2(0, y) +R2(0, y))dy.

Proof. By the Poincare inequality, we have, for R with R(0) = R(1) = 0,∫ 1

0

R2(y)dy ≤ 1

π2

∫ 1

0

R2
y(y)dy.

It follows from (2.7) that M2(β) ≤ ūv1 so that

u∗y(y) =
M2(β)

v(r∗(y))
≤ v1
v0
ū, |u∗y(y)vr(r

∗(y))| ≤ ūv1‖vr‖L∞
v0

.

Multiply the U -equation by KU , R-equation by R, and integrate over [0, 1]
to get

1

2

d

dt

∫ 1

0

(KU2 +R2)dy =−
∫ 1

0

(
Kv(r∗)U2

y +Ku∗yvr(r
∗)RUy + δR2

y −RUy
)
dy

≤−
∫ 1

0

(
Kv0U

2
y + δR2

y

)
dy +

Kūv1‖vr‖L∞ + v0
v0

∫ 1

0

|RUy|dy.

By Young’s inequality and the Poincare inequality,∫ 1

0

|RUy|dy ≤
δπ2

2

∫ 1

0

R2dy +
1

2π2δ

∫ 1

0

U2
ydy

≤δ
2

∫ 1

0

R2
ydy +

1

2π2δ

∫ 1

0

U2
ydy.

It is clear that, for small ū,

Kv0 >
Kūv1‖vr‖L∞ + v0

2π2δv0
and δ >

Kūv1‖vr‖L∞ + v0
2v0

δ.
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Thus, there exists ρ > 0 such that

1

2

d

dt

∫ 1

0

(KU2 +R2)dy ≤− ρ

2

∫ 1

0

1

π2
(KU2

y +R2
y)dy

≤− ρ

2

∫ 1

0

(KU2 +R2)dy.

Hence, by Gronwall’s inequality,∫ 1

0

(KU2(t, y) +R2(t, y))dy ≤ e−ρt
∫ 1

0

(KU2(0, y) +R2(0, y))dy.

This establishes the L2 linear stability of steady states with small ū.

4 Eigenvalues and bifurcations of steady-states

In view of the existence and multiplicity result (Theorem 2.2), steady-states of
the boundary value problem (1.3) and (1.4) cannot be uniquely parameterized
by ū in general. We thus parameterize steady-states by the parameter β with
ū(β) = 4δD(β) and examine the spectral stability of steady-states as β varies.

It follows from the previous section that steady-states associated to small ū
are linearly stable. As we increase β, there are two possibilities for the steady-
state to loss its stability: one is that a zero eigenvalue is created and the other
is a pair of pure imaginary eigenvalues. In this section, we focus on stability
changes of steady-states due to bifurcations of zero eigenvalues. The basic tool
for this investigation is an Evans or a Wronskian type function.

4.1 Eigenvalue problem and an Evans function

For β > 0, let (u, r) = (u(y; β), r(y; β)) be the steady-state with ū = 4δD(β)
defined in (2.14). In view of the linearized system (3.16), the eigenvalue problem
associated to this steady-state is the system

(v(r)Uy + uyvr(r)R)y = λU, δRyy + Uy = λR (4.17)

with the boundary condition

U(0) = R(0) = 0, U(1) = R(1) = 0. (4.18)

Alternatively, we can set

P = v(r)Uy + uyvr(r)R and Q = δRy + U,

and rewrite system (4.17) into a system of first order equations

U ′ =
1

v(r)
P − uyvr(r)

v(r)
R, P ′ = λU, R′ =

1

δ
Q− 1

δ
U, Q′ = λR, (4.19)
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where prime denotes the derivative with respect to y. Setting Z = (U, P,R,Q),
system (4.19) has the compact form

Z ′ = A(y;λ, β)Z, (4.20)

where

A(y;λ, β) =


0 1

v(r(y;β))
−uy(y;β)vr(r(y;β))

v(r(y;β))
0

λ 0 0 0
−1
δ

0 0 1
δ

0 0 λ 0

 .

For any given β ∈ R+ and λ ∈ C, let Zj(y;λ, β) for j = 1, 2, 3, 4 be the
solutions of (4.19) with

Z1(0;λ, β) = Z3(1;λ, β) = e2 = (0, 1, 0, 0),

Z2(0;λ, β) = Z4(1;λ, β) = e4 = (0, 0, 0, 1)

so that Z1 and Z2 are linearly independent solutions and satisfy the boundary
condition at y = 0, and Z3 and Z4 are linearly independent solutions and satisfy
the boundary condition at y = 1.

Set

E(y;λ, β) = det(Z1(y;λ, β), Z2(y;λ, β), Z3(y;λ, β), Z4(y;λ, β)). (4.21)

We have

Lemma 4.1. The function E is independent of y and is smooth in (λ, β).

Proof. The claim follows from that

E(y;λ, β) = exp

{∫ y

0

trA(τ ;λ, β)dτ

}
E(0;λ, β)

and trA(τ ;λ, β) = 0.

We thus denote E(y;λ, β) by E(λ, β) : C × R+ → C and refer to it as the
Evans function of the eigenvalue problem (4.20). Evans function was widely
used to study point spectrum of linearization along special solutions, such as
various wave solutions, of systems of PDEs (see, for example, [8, 1, 11, 12, 5,
9, 6]) and the corresponding spectral problem is defined typically on the whole
space. For the problem at hand, the eigenvalue problem is a boundary value
problem but the idea for the construction of an Evans function is the same.

Lemma 4.2. A number λ ∈ C is an eigenvalue if and only if E(λ, β) = 0.
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Proof. Suppose λ is an eigenvalue. Then there exists a nonzero solution Z(y) =
Z(y;λ, β) 6= 0 of the boundary value problem (4.19). Let Z(0) = (0, c1, 0, c2)
and Z(1) = (0, c3, 0, c4) for some ci’s, not all zeros. Since Z(0) = c1Z1(0;λ, β)+
c2Z2(0;λ, β) and Z(1) = c3Z3(1;λ, β) + c4Z4(1;λ, β), one has

Z(y) = c1Z1(y;λ, β) + c2Z2(y;λ, β) = c3Z3(y;λ, β) + c4Z4(y;λ, β).

Therefore, E(λ, β) = 0. On the other hand, if E(λ, β) = 0, then

c1Z1(y;λ, β) + c2Z2(y;λ, β) + c3Z3(y;λ, β) + c4Z4(y;λ, β) = 0

for some ci’s, not all zeros. Since Z1 and Z2 are linearly independent, and Z3 and
Z4 are linearly independent, it cannot happen that c1 = c2 = 0 or c3 = c4 = 0.
Therefore,

Z(y) := c1Z1(y;λ, β) + c2Z2(y;λ, β) = −c3Z3(y;λ, β)− c4Z4(y;λ, β)

is a nonzero solution of the boundary value problem (4.19), and hence, the
number λ is an eigenvalue.

4.2 Zero eigenvalue and its bifurcation for λ ∈ R.
In system (2.6) for the steady-states of (1.3), we introduce p = v(r)uy and
q = δry + u. System (2.6) becomes

uy =
1

v(r)
p, py = 0, ry =

1

δ
q − 1

δ
u, qy = 0. (4.22)

It can be checked directly that

Lemma 4.3. System (4.22) has three integrals given by

H1 = p, H2 = q, H3 =
1

2
(q − u)2 + δf(r)p.

When λ = 0, system (4.19) of eigenvalue problems is reduced to

U ′ =
1

v(r)
P − uyvr(r)

v(r)
R, P ′ = 0, R′ =

1

δ
Q− 1

δ
U, Q′ = 0, (4.23)

which is nothing but the linearization of system (4.22) along the solution z =
(u, p, r, q) of (4.22). We have

Lemma 4.4. System (4.23) has three integrals Gj = 〈∇Hj(z), Z〉:

G1 = P, G2 = Q, G3 = −(q − u)U + δf(r)P +
δp

v(r)
R + (q − u)Q.
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Proof. One can verify the statement directly. In general, if H(z) is an integral
for a nonlinear system z′(t) = F (z), then its linearization Z ′ = DF (z(t))Z
along a solution z(t) has an integral given by G = 〈∇H(z(t)), Z〉.

As a consequence, we have

Lemma 4.5. The principal fundamental matrix solution Φ(y) at y = 0 of sys-
tem (4.23) is

Φ(y) =


U1(y) U2(y) U3(y) U4(y)

0 1 0 0
R1(y) R2(y) R3(y) R4(y)

0 0 0 1


where

U1(y) =
v1

v(r(y))
+

r′(0)

v(r(y))

∫ y

0

vr(t)dt,

U2(y) =
1

v(r(y))

∫ y

0

(vr(r(t))f(r(t)) + 1)dt,

U3(y) =− u′(0)

v(r(y))

∫ y

0

vr(r(t))dt,

U4(y) =− 1

δv(r(y))

∫ y

0

u(t)vr(r(t))dt = 1− U1(y),

R1(y) =
r′(y)

u′(y)
U1(y)− r′(0)

u′(y)
=
r′(y)

u′(0)
− r′(0)

u′(y)
+
r′(0)r′(y)

v1u′(0)

∫ y

0

vr(r(t))dt,

R2(y) =
r′(y)

u′(y)
U2(y)− f(r(y))

u′(y)
,

R3(y) =
r′(y)

u′(y)
U3(y) +

u′(0)

u′(y)
,

R4(y) =
r′(y)

u′(y)
U4(y) +

u(y)

δu′(y)
= −R1(y).

Proof. We construct only the second column of Φ(y) and the other columns can
be found similarly. Suppose that (U, P,R,Q)T is a solution of (4.23) with with
the initial condition e2. It follows from Lemma 4.4 that, for all y,

P (y) = G1(0) = 1, Q(y) = G2(0) = 0, −δr′U + δf(r) + δu′R = G3(0) = 0.

Substituting R = r′

u′
U − f(r)

u′
into the U -equation of (4.23), we get

vU ′ + vrr
′U = vrf(r) + 1.

Therefore,

U =
1

v

∫ y

0

(vrf(r) + 1) dt.

13



Hence,

R =
r′

u′
U − f(r)

u′
.

This completes the proof.

Recall that ū(β) = 4δD(β) in (2.14) where D(β) is defined in (2.9).

Theorem 4.6. The number λ = 0 is an eigenvalue associated to β∗ > 0 if and
only if ū′(β∗) = 0 (or equivalently, D′(β∗) = 0).

Theorem 4.6 follows from Lemma 4.2 and

Proposition 4.7. For β > 0, E(0, β) = −8β2ū′(β)/ū2(β).

Proof. Recall the definition of Zj(y;λ, β), for j = 1, 2, 3, 4, given next to system
(4.20). Denote Z0

j (y) = Zj(y; 0, β) for simplicity.
It follows from Lemmas 4.5 and 4.1, (2.12), (2.13), (2.14) and u′(1) = M2/v1

that,

E(0, β) = det(Z0
1(1), Z0

2(1), Z0
3(1), Z0

4(1)) = det(Φ(1)e2,Φ(1)e4, e2, e4)

=
r′(1)− r′(0)

u′(1)
U2(1) = −8β

ū

(∫ 1

0

vr(r(t))f(r(t))dt+ 1

)
.

(4.24)

Using the symmetry of r(y) with respect to y = 1/2 established in the proof
of Theorem 2.2 and expression (2.12) and a number of substitutions, we have∫ 1

0

vr(r(t))f(r(t))dt =

√
2δ

M

∫ α

0

vr(r)f(r)√
f(α)− f(r)

dr

=

√
2δ

M

∫ β

0

svr(g(s))g′(s)√
β − s

ds

=

√
2δβ

3
2

M

∫ 1

0

tvr(g(βt))g′(βt)√
1− t

dt

=

√
2δβ

3
2

M

∫ 1

0

tg′′(βt)√
1− t

dt =
4δβ2

ū

∫ 1

0

tg′′(βt)√
1− t

dt.

(4.25)

In the second to last step, we have used the relation g′′(s) = vr(g(s))g′(s) from
g′(s) = v(g(s)) (see Lemma 2.1).

Recall that

ū′(β) = 4δ

∫ 1

0

g′(βt)√
1− t

dt+ 4δβ

∫ 1

0

tg′′(βt)√
1− t

dt. (4.26)

Substitute (4.25) into (4.24) and use (2.14) and (4.26) to get

E(0, β) =− 8β2

ū2

(
4δβ

∫ 1

0

tg′′(βt)√
1− t

dt+
ū(β)

β

)
=− 8β2

ū2

(
4δβ

∫ 1

0

tg′′(βt)√
1− t

dt+ 4δ

∫ 1

0

g′(βt)√
1− t

dt

)
=− 8β2ū′(β)

ū2(β)
.
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This completes the proof.

In general,

Lemma 4.8. If, for some positive integer k, ū′(β∗) = · · · = ū(k)(β∗) = 0, then

∂jE

∂βj
(0, β∗) = 0 for j < k and

∂kE

∂βk
(0, β∗) = − 8β2

∗
ū2(β∗)

ū(k+1)(β∗).

The main technical result is

Proposition 4.9. If β∗ is a critical point of ū(β), then

Eλ(0, β∗) =
16δβ3

∗
ū3

L(β∗)

where

L(β) =δ

(∫ 1

0

g′(βτ)√
1− τ

dτ

)−1
∆−

∫ 1

0

g′(βτ)
(
1−
√

1− τ
)
F (τ, β)dτ

−
(∫ 1

0

g′(βτ)√
1− τ

dτ

)−1 ∫ 1

0

g′(βτ)
√

1− τG(τ, β)F (τ, β)dτ,

where

F (τ, β) =

∫ τ

0

tg′(βt)(1− t)−3/2dt, G(τ, β) =

∫ τ

0

g′(βt)(1− t)−3/2dt,

∆ =

∫ 1

0

g′(βτ)√
1− τ

dτ

∫ 1

0

√
1− τF (τ, β)dτ −

∫ 1

0

√
1− τG(τ, β)F (τ, β)dτ.

It then follows that

Corollary 4.10. Fix v(r) and let β∗ be a critical point of ū(β). If ∆ < 0 or if
∆ > 0 but δ > 0 is small enough, then Eλ(0, β∗) < 0.

Remark 4.11. We could not prove but suspect that ∆ < 0 is always true for
decreasing functions v(r) considered in the model problem.

Before a proof of Proposition 4.9, we state our main result as a simple
consequence.

If E(0, β∗) = 0 and Eλ(0, β∗) 6= 0, then, by the Implicit Function Theorem,
there exists an η > 0 and a unique smooth function λ(β) for β ∈ (β∗−η, β∗+η)
such that λ(β∗) = 0 and E(λ(β), β) = 0 for all β ∈ (β∗ − η, β∗ + η). Then,

Eβ(λ(β), β) + Eλ(λ(β), β)λ′(β) = 0

for all β ∈ (β∗ − η, β∗ + η). In particular,

λ′(β∗) = −Eβ(0, β∗)

Eλ(0, β∗)
=

8β2
∗ ū
′′(β∗)

ū2(β∗)Eλ(0, β∗)
. (4.27)

As consequence of Corollary 4.10 and the above formula (4.27), we have
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Theorem 4.12. Assume the condition in Corollary 4.10 so that Eλ(0, β∗) < 0.

(i) If β∗ satisfies ū′(β∗) = 0 and ū′′(β∗) < 0, then, for β < β∗ but close,
there is exactly one negative eigenvalue close to zero (bifurcating from the
zero eigenvalue of β∗); for β > β∗ but close, there is exactly one positive
eigenvalue close to zero (bifurcating from the zero eigenvalue of β∗).

(ii) If β∗ satisfies ū′(β∗) = 0 and ū′′(β∗) > 0, then, for β < β∗ but close,
there is exactly one positive eigenvalue close to zero (bifurcating from the
zero eigenvalue of β∗); for β > β∗ but close, there is exactly one negative
eigenvalue close to zero (bifurcating from the zero eigenvalue of β∗).

Remark 4.13. In general, if ū(k)(β∗) = 0 for k = 1, · · · , n and ū(n+1)(β∗) 6= 0,
then, from Lemma 4.8,

λ(k)(β∗) = 0 for k = 1, 2, · · · , n− 1, λ(n)(β∗) =
8β2ū(n+1)(β∗)

ū2(β∗)Eλ(0, β∗)
.

One can then make conclusions on the bifurcation of the zero eigenvalue for
β 6= β∗ but close to β∗.

5 Proof of Proposition 4.9

We start with some preparation.

Lemma 5.1. R2(0) = R2(1) = 0 and R2(y) < 0 for y ∈ (0, 1) and R2(y) is
monotone for y ∈ [0, 1/2).

Proof. Note that rβ(y; β∗) = pβ(β∗)R2(y). Recall from (2.12) that, for y ∈
(0, 1/2),

r′(y; β) =
√

2δ−1M(β) (β − f(r(y; β))1/2 ,

and hence,

r′β =a(y; β)rβ +

√
2

δ(β − f(r))

(
M(β)

2
+Mβ(β) (β − f(r))

)
,

where

a(y; β) = − M(β)

v(r)
√

2δ(β − f(r))
.

Denote Ψ(y) the principal fundamental matrix solution with system matrix
a(y; β). Then, noting that rβ(0; β∗) = 0,

rβ(y; β∗) =

∫ y

0

Ψ(y)Ψ−1(t)

√
2

δ(β∗ − f(r))

(
M(β∗)

2
+Mβ(β∗) (β∗ − f(r))

)
dt.
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It follows from

M(β) =
ū(β)β−1/2√

8δ
and Mβ(β∗) = − ū(β∗)β

−3/2
∗

2
√

8δ

that, for y ∈ (0, 1/2),

M(β∗)

2
+Mβ(β∗) (β∗ − f(r)) = β−3/2∗ f(r(y)) > 0.

Therefore, rβ(y; β∗) > 0 for y ∈ (0, 1/2). The statement for R2(y) follows.

Lemma 5.2. If β∗ is a critical value of ū(β), then∫ 1

0

g′′(β∗t)√
1− t

dt =
ū(β∗)

8δβ2
∗
− v1
β∗
− ū(β∗)

4δβ2
∗

= − ū(β∗)

8δβ2
∗
− v1
β∗
,

∫ 1

0

vr(r(t; β∗))dt = − 1

2β∗
− 4δv1
ū(β∗)

, U1(1) = −1− ū(β∗)

4δβ∗v1
, R1(1) =

1

δ
.

Proof. It follows from the same line in (4.25) that, for any β,∫ 1

0

vr(r(t; β))dt =
4δβ

ū(β)

∫ 1

0

g′′(βt)√
1− t

dt.

If β∗ is a critical value of ū(β), then, from (2.14) and (4.26),

4δβ2
∗

ū(β∗)

∫ 1

0

tg′′(β∗t)√
1− t

dt = −1 or

∫ 1

0

tg′′(β∗t)√
1− t

dt = − ū(β∗)

4δβ2
∗
.

Now,∫ 1

0

(1− t)g′′(β∗t)√
1− t

dt =

∫ 1

0

√
1− tg′′(β∗t)dt =

∫ 1

0

√
1− t

(
1

β∗
g′(β∗t)

)′
dt

=− g′(0)

β∗
+

1

2β∗

∫ t

0

g′(β∗t)√
1− t

dt =
ū(β∗)

8δβ2
∗
− v1
β∗
.

Thus, ∫ 1

0

g′′(β∗t)√
1− t

dt =
ū(β∗)

8δβ2
∗
− v1
β∗
− ū(β∗)

4δβ2
∗

= − ū(β∗)

8δβ2
∗
− v1
β∗
.

Other statements follow immediately.

Lemma 5.3. If β∗ is a critical value of ū(β), then U2(y) is odd and R2(y) is
even with respect to y = 1/2.
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Proof. We will show that U2(y) is odd with respect to y = 1/2 from which it
follows by the relation in Lemma (4.5) that R2(y) is even. Fix y ∈ [0, 1]. Note
that from the symmetry of r(y) we have∫ 1

y

vr(r(t))f(r(t)) dt =

∫ 1−y

0

vr(r(t))f(r(t)) dt.

Lemma (4.7) and the above give

0 =

∫ 1

0

(
vr(r(t))f(r(t)) + 1

)
dt

=

∫ y

0

(
vr(r(t))f(r(t)) + 1

)
dt+

∫ 1−y

0

(
vr(r(t))f(r(t)) + 1

)
dt.

This implies −U(y) = U(1− y) proving the result.

It follows from (4.21) and Lemma 4.1 that

E(λ, β) = det(Z1(1;λ, β), Z2(1;λ, β), Z3(1;λ, β), Z4(1;λ, β))

= det(Z1(1;λ, β), Z2(1;λ, β), e2, e4).

Hence,

Eλ(0, β∗) = det(Z1,λ(1; 0, β∗), Z2(1; 0, β∗), e2, e4)

+ det(Z1(1; 0, β∗), Z2,λ(1; 0, β∗), e2, e4).

At λ = 0, Z1(1; 0, β∗) = e2 and hence,

Eλ(0, β∗) = det(Z1,λ(1; 0, β∗), Z2(1; 0, β∗), e2, e4).

If we denote Z1,λ(1; 0, β∗) = (E1, E2, E3, E4)
T , noting that

Z2(1; 0, β∗) = (U4(1), 0, R4(1), 1)T ,

then

Eλ(0, β∗) = U4(1)E3−R4(1)E1 =
U4(1)

u′(1)
(u′(1)E3− r′(1)E1)−

ū

δu′(1)
E1. (5.28)

It is known that Z1,λ(y) = Z1,λ(y; 0, β∗) is a solution of

Z ′ = A(y; 0, β∗)Z + Aλ(y; 0, β∗)Z1(y; 0, β∗) (5.29)

with initial condition Z(0) = 0. Hence,

Z1,λ(y) = Φ(y)

∫ y

0

Φ−1(t)Aλ(t; 0, β∗)Z1(t; 0, β∗)dt. (5.30)
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Using Lemma 4.5, one has

Φ(1) =


U1(1) 0 U3(1) U4(1)

0 1 0 0
R1(1) 0 R3(1) R4(1)

0 0 0 1


and

Φ−1(y) =


R3 U3R2 − U2R3 −U3 U3R4 − U4R3

0 1 0 0
−R1 U2R1 − U1R2 U1 U4R1 − U1R4

0 0 0 1

 .

Also,

Aλ(y; 0, β∗) =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 .

If we denote∫ 1

0

Φ−1(t)Aλ(t; 0, β∗)Z1(t; 0, β∗)dt = (S1, S2, S3, S4)
T ,

then

S1 =

∫ 1

0

(U2(U3R2 − U2R3) +R2(U3R4 − U4R3)) dt, S2 =

∫ 1

0

U2dt,

S3 =

∫ 1

0

(U2(U2R1 − U1R2) +R2(U4R1 − U1R4)) dt, S4 =

∫ 1

0

R2dt.

It then follows from (5.30) that

E1 = U1(1)S1 + U3(1)S3 + U4(1)S4 and E3 = R1(1)S1 +R3(1)S3 +R4(1)S4.

Using the fact that r′(0) = −r′(1) = ū/2δ, u′(0) = u′(1), and the relations
in Lemma (4.5) it is easy to show that

Eλ(0, β∗) = (r′(0)δ)−1 (r′(0)S1 − u′(0)S3)− 2S3.

For convenience we consider the integrands L1 and L3 of S1 and S3 respectivly.
It follows from Lemma 4.5 that

U4R1 − U1R4 = R1,

which gives
L3 = U2

2R1 − U1U2R2 +R1R2
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The expanded terms in L1 are

U3R2 − U2R3 =
u′(0)

r′(0)

(v1
v
− U1

)
R2 − U2

(
r′

r′(0)
− u′(0)

r′(0)
R1

)
=
u′(0)v1
r′(0)v

R2 −
u′(0)

r′(0)
U1R2 −

r′

r′(0)
U2 +

u′(0)

r′(0)
R1U2

and

U3R4 − U4R3 =
u′(0)

r′(0)

(v1
v
− U1

)
(−R1)− (1− U1)

(
r′

r′(0)
− u′(0)

r′(0)
R1

)
= −u

′(0)

r′(0)

v1
v
R1 +

u′(0)

r′(0)
R1 +

r′

r′(0)
U1 −

r′

r′(0)

Hence,

r′(0)

u′(0)
L1 =

v1
v
U2R2 − U1U2R2 −

r′

u′(0)
U2
2 + U2

2R1 −
v1
v
R1R2

+R1R2 +
r′

u′(0)
U1R2 −

r′

u′(0)
R2

=
v1
v
U2R2 −

r′

u′(0)
U2
2 −

v1
v
R1R2 +

r′

u′(0)
U1R2 −

r′

u′(0)
R2 + L3.

As a consequence of Lemma 5.3, after integration over the interval [0, 1], the
first two terms v1

v
U2R2 and u′(0)r′U2

2 will vanish. Thus, we drop these terms. It
follows from Lemma 4.4 that −r′(0) = −r′U1 + u′R1, which gives the reduction

r′(0)L1 = (r′(0)− r′)R2 + u′(0)L3

Again we drop the term r′R2, as it will vanish after integration, to obtain

r′(0)L1 − u′(0)L3 = r′(0)R2 (5.31)

Turning our attention back to L3, since∫ y

0

r′(t)U1(t) dt =

∫ y

0

r′(0)
d

dt

(
f(r(t))

) ∫ t

0

vr(r(s)) ds+ v1
d

dt
[f(r(t))] dt

=f(r(y))

(
r′(0)

∫ y

0

vr(r(t)) dt+ v1

)
− r′(0)

(∫ y

0

f(r(t))vr(r(t)) + 1 dt

)
+ r′(0)y

=v(r(y))f(r(y))U1(y)− v(r(y))r′(0)U2(y) + r′(0)y,

after expanding U2R1 − U1R2 we have∫ 1

0

U2
2R1 − U1U2R2 dt =

∫ 1

0

U2

∫ t

0

1

v(r(s))
R1(s) ds dt. (5.32)
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Finally, noting that −δR2(y) =
∫ y
0
U2(t) dt, we integrate the above expression

by parts and combine with (5.31) to obtain

Eλ(0, β∗) =
1

δ

∫ 1

0

R2(t) dt− 2

∫ 1

0

R1(t)R2(t) dt− 2

∫ 1

0

δ

v(r(t))
R1(t)R2(t) dt.

It is easy to check that, for any function φ(v) and ψ(v) = vφ(v),∫ 1

0

φ(v(r))R2dy =2

∫ 1/2

0

φ(v(r))R2dy

=
2

M2

∫ 1/2

0

φ(v(r))r′
∫ y

0

(vrf + 1)dtdy − 2

M2

∫ 1/2

0

f(r)ψ(v(r))dy.

We have ∫ 1/2

0

φ(v(r(y)))r′(y)

∫ y

0

(vrf + 1)dtdy

=

∫ α

0

φ(v(p))

∫ r−1(p)

0

(vrf + 1)dtdp

=

√
δ√

2M

∫ α

0

φ(v(p))

∫ p

0

vr(z)f(z) + 1√
f(α)− f(z)

dzdp

=

√
δ√

2M

∫ α

0

φ(v(p))

∫ f(p)

0

sg′′(s) + g′(s)√
β − s

dsdp

=

√
δ√

2M

∫ β∗

0

ψ(g′(w))

∫ w

0

sg′′(s) + g′(s)√
β∗ − s

dsdw

=

√
δβ

3/2
∗√

2M

∫ 1

0

ψ(g′(β∗τ))

∫ τ

0

β∗tg
′′(β∗t) + g′(β∗t)√

1− t
dtdτ

=

√
δβ

3/2
∗√

2M

∫ 1

0

ψ(g′(β∗τ))

∫ τ

0

(tg′(β∗t))t√
1− t

dtdτ,

and ∫ 1/2

0

f(r)ψ(v(r))dy =

√
δ√

2M

∫ α

0

f(p)ψ(v(p))√
f(α)− f(z)

dp

=

√
δ√

2M

∫ β∗

0

sg′(s)ψ(g′(s))√
β∗ − s

ds

=

√
δβ

3/2
∗√

2M

∫ 1

0

τg′(β∗τ)ψ(g′(β∗τ))√
1− τ

dτ.

Also, ∫ τ

0

(tg′(β∗t))t√
1− t

dt =tg′(β∗t)(1− t)−1/2|τ0 −
1

2

∫ τ

0

tg′(β∗t)(1− t)−3/2dt

=
τg′(β∗τ)√

1− τ
− 1

2

∫ τ

0

tg′(β∗t)(1− t)−3/2dt.
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Therefore,∫ 1

0

φ(v(r(y)))R2(y)dy =−
√
δβ

3/2
∗√

2M3

∫ 1

0

ψ(g′(β∗τ))

∫ τ

0

tg′(β∗t)(1− t)−3/2dt dτ.

Note that∫ 1

0

v + δ

v
R1(y)R2(y)dy

=

∫ 1

0

(
r′

u′(0)
− r′(0)

u′
+
r′(0)r′

M2

∫ y

0

vrdt

)
v + δ

v
R2dy

=−
∫ 1

0

r′(0)

u′
v + δ

v
R2dy +

r′(0)

M2

∫ 1

0

r′
∫ y

0

vrdt
v + δ

v
R2dy

=− 2r′(0)

M2

∫ 1/2

0

(v + δ)R2dy +
r′(0)

M2

∫ 1/2

0

r′
∫ y

0

vrdt
v + δ

v
R2dy

+
r′(0)

M2

∫ 1

1/2

r′
∫ y

0

vrdt
v + δ

v
R2dy

=− r′(0)

M2

∫ 1

0

(v + δ)R2dy −
2r′(0)

M2

∫ 1/2

0

r′
∫ 1/2

y

vrdt
v + δ

v
R2dy,

and∫ 1/2

0

r′
∫ 1/2

y

vrdt
v + δ

v
R2(y)dy =

1

M2

∫ 1/2

0

v + δ

v
r′r′
∫ y

0

(vrf + 1)dt

∫ 1/2

y

vrdtdy

− 1

M2

∫ 1/2

0

(v + δ)fr′
∫ 1/2

y

vrdtdy

=:
1

M2
(I1 − I2).

Now,

I1 =

√
2M√
δ

∫ α

0

v(p) + δ

v(p)

√
f(α)− f(p)

∫ r−1(p)

0

(vrf + 1)dt

∫ 1/2

r−1(p)

vrdtdp

=

√
δ√

2M

∫ α

0

v(p) + δ

v(p)

√
β∗ − f(p)

∫ p

0

vr(z)f(z) + 1√
β∗ − f(z)

dz

∫ α

p

vr(z)√
β∗ − f(z)

dzdp

=

√
δ√

2M

∫ α

0

v(p) + δ

v(p)

√
β∗ − f(p)

∫ f(p)

0

sg′′(s) + g′(s)√
β∗ − s

ds

∫ β∗

f(p)

g′′(s)√
β∗ − s

dsdp

=

√
δ√

2M

∫ β∗

0

(g′(q) + δ)
√
β∗ − q

∫ q

0

sg′′(s) + g′(s)√
β∗ − s

ds

∫ β∗

q

g′′(s)√
β∗ − s

ds dq,
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and

I2 =

∫ α

0

(v(p) + δ)f(p)

∫ 1/2

r−1(p)

vrdt dp

=

√
δ√

2M

∫ α

0

(v(p) + δ)f(p)

∫ α

p

vr(z)√
β∗ − f(z)

dz dp

=

√
δ√

2M

∫ α

0

(v(p) + δ)f(p)

∫ β∗

f(p)

g′′(s)√
β∗ − s

ds dp

=

√
δ√

2M

∫ β∗

0

(g′(q) + δ)g′(q)q

∫ β∗

q

g′′(s)√
β∗ − s

ds dq.

Therefore,

I1 − I2 =−
√
δ

2
√

2M

∫ β∗

0

(g′(q) + δ)
√
β∗ − q

∫ q

0

sg′(s)

(β∗ − s)3/2
ds

∫ β∗

q

g′′(s)√
β∗ − s

ds dq

=−
√
δβ

5/2
∗

2
√

2M

∫ 1

0

(g′(β∗τ) + δ)
√

1− τ
∫ τ

0

tg′(β∗t)

(1− t)3/2
dt

∫ 1

τ

g′′(β∗t)√
1− t

dt dτ.

Set, as introduced in the statement of Proposition 4.9,

F (τ, β∗) =

∫ τ

0

tg′(β∗t)

(1− t)3/2
dt.

Then,

−
√

2M3ū

8
√
δβ

5/2
∗
Eλ(0, β∗) =

∫ 1

0

(
ū

8β∗δ
+ g′(β∗τ) + δ

)
g′(β∗τ)F (τ, β∗)dτ

+ β∗

∫ 1

0

(g′(β∗τ) + δ)
√

1− τF (τ, β∗)

∫ 1

τ

g′′(β∗t)√
1− t

dt dτ.

It follows from Lemma 5.2 that

β∗(g
′(β∗τ) + δ)

√
1− τ

∫ 1

τ

g′′(β∗t)√
1− t

dt =− (g′(β∗τ) + δ)
√

1− τ
(

ū

8β∗δ
+ v1

)
− β∗(g′(β∗τ) + δ)

√
1− τ

∫ τ

0

g′′(β∗t)√
1− t

dt.

and

−β∗(g′(β∗τ) + δ)
√

1− τ
∫ τ

0

g′′(β∗t)√
1− t

dt = −(g′(β∗τ) + δ)
√

1− τ
∫ τ

0

(g′(β∗t))t√
1− t

dt

=− (g′(β∗τ) + δ)
√

1− τ
(
g′(β∗τ)√

1− τ
− v1 −

1

2

∫ τ

0

g′(β∗t)(1− t)−3/2dt
)

=− (g′(β∗τ) + δ)g′(β∗τ) + v1(g
′(β∗τ) + δ)

√
1− τ

+
1

2
(g′(β∗τ) + δ)

√
1− τ

∫ τ

0

g′(β∗t)(1− t)−3/2dt.
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If we set

G(τ, β∗) =

∫ τ

0

g′(β∗t)(1− t)−3/2dt,

L(β∗) =
8β∗δ

ū

√
2M3ū

8
√
δβ

5/2
∗
Eλ(0, β∗) =

√
2δM3

β
3/2
∗

Eλ(0, β∗),

Then,

L(β) =

∫ 1

0

(g′(βτ) + δ)
√

1− τF (τ, β)dτ −
∫ 1

0

g′(βτ)F (τ, β)dτ

− 4βδ

ū

∫ 1

0

(g′(βτ) + δ)
√

1− τG(τ, β)F (τ, β)dτ

=δ

(∫ 1

0

g′(βτ)√
1− τ

dτ

)−1
∆−

∫ 1

0

g′(βτ)
(
1−
√

1− τ
)
F (τ, β)dτ

−
(∫ 1

0

g′(βτ)√
1− τ

dτ

)−1 ∫ 1

0

g′(βτ)
√

1− τG(τ, β)F (τ, β)dτ,

where

∆ =

∫ 1

0

g′(βτ)√
1− τ

dτ

∫ 1

0

√
1− τF (τ, β)dτ −

∫ 1

0

√
1− τG(τ, β)F (τ, β)dτ.

This then completes the proof of Proposition 4.9.

6 Hysteresis: a numerical simulation of dy-

namic boundary conditions

Our bifurcation analysis of the zero eigenvalue shows the stability change of
the steady-state when β crosses critical points of ū(β). For a certain potential
functions v(r) (see the example at the end of Sect. 2), the function ū = 4δD(β)
is cubic-like and the condition in Corollary 4.10 holds. Assume we are in this
case. Let ū1 be the local maximum value and let ū2 be the local minimum
value. The stability result suggests the following scenario for a hysteresis: if we
consider the dynamic boundary condition by letting ū(t) increase in t slowly
from small value to large value, then, for t < t1 so that ū(t1) = ū1, the solution
(u(y, t), r(y, t)) of (1.3) and (1.4) with ū = ū(t) will behave closely to the left-
branch of steady-states associated to ū = ū(t) and, for t > t1, the solution
(u(y, t), r(y, t)) will behave closely to the steady-state associated to ū = ū(t) >
ū1 on the right-branch; if we now reverse the dynamic boundary condition by
letting ū(t) decreases slowly from large value to small value, then, for t < t2
where t2 is the first time so that ū(t2) = ū2, the solution (u(y, t), r(y, t)) will
behave closely to the right-branch of steady-states associated to ū = ū(t) and,
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for t > t2, the solution (u(y, t), r(y, t)) will behave closely to the steady-state
associated to ū = ū(t) < ū2 on the left-branch. In particular, the two processes
are not reversible to each other over the range (ū2, ū1) of ū; that is, this problem
possesses a hysteresis phenomenon. Although we could not justify this hysteresis
rigorously, a numerical simulation provides a strong support.

For the numerical simulation, we consider two ‘opposite’ dynamic boundary
conditions for (1.3) and (1.4) with

ū = ū+(t) =


L, t ∈ [0, T1]
h(t), t ∈ [T1, T2]
R, t ∈ [T2, T ]

and its ‘reverse’

ū = ū−(t) =


R, t ∈ [0, T1]

h(T1 + T2 − t), t ∈ [T1, T2]
L, t ∈ [T2,∞)

where L < ū2 < ū1 < R, T2 � T1 � 1, and h(t) is increasing with h(T1) =
L and h(T2) = R. So the first dynamic boundary condition ū = ū+(t) is
slowly increasing in t and the other ū = ū−(t) slowly decreasing. For the
first boundary condition ū = ū+(t), we choose the steady-state associated to
boundary condition ū = L as the initial condition and for the second the steady-
state associated to boundary condition ū = R as the initial condition. Snaps
shots of the numerical simulation (u-component only) are provided in Figure 3
with the left set for ū = ū+(t) and the right for ū = ū−(t). It shows clearly that
the two sets of figures are not ‘reverse’ to each other.

Acknowledgment. The authors are grateful to the anonymous referee for
his/her careful review of and for pointing out mistakes made in the original
version of the paper, and for an observation that leads to Lemma 2.3.
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Figure 3: On the left hand side, beginning at the top, the right bound-
ary condition ū is slowly increased. When a value of ū is near a critical
point ū1 ≈ 10.98 or ū2 ≈ 12.78, we pause the boundary condition in or-
der to converge to a steady state. The left hand side pauses at the values
u1L(1) = 10.6, u2L(1) = 11.1, u3L(1) = 12.7, and u4L(1) = 12.9 and the right
hand, beginning from the bottom, pauses at the values u1R(1) = 12.9, u2R(1) =
12.6, u3R(1) = 11, and u4R(1) = 10.7.
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