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Abstract

In this work, we revisit the important problem of disclinations for
nematic liquid-crystals in the variational theory of Oseen-Zöcher-Frank.
Using the framework of dynamical system theory, the Frank’s energy
functional among a class of special director fields for both the elastically
isotropic and anisotropic cases are examined. The existence result on the
critical points of the energy functional is reproduced in a much simpler and
intuitive way. With the help of a new observation, the (local) minimality
of all critical points within the class of director fields is established.
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1 Introduction

Liquid-crystals are intermediate phases between solid states and liquid states
([14, 9, 5, 7, 11, 3]). They have capability of flow but also possess a certain
degree of crystal structures. Nematics are the simplest liquid crystals that
consist of rod-like molecules: at each location x in the region Ω occupied by the
nematic liquid crystals, a unit vector n(x) ∈ S2 is introduced to characterize the
average preferred alignment of the rod-like elements near x. The static theory
of Oseen-Zöcher-Frank ([14, 9, 7]) for nematic liquid crystals looks for director
fields n : Ω→ S2 that minimize the elastic energy

F(n) =

∫
Ω

W(n,∇n)dx, (1) {Energy}

where W(n,∇n) is the Frank’s energy function ([9, 7, 11]) given by

W(n,∇n) =
K1

2
(div n)

2
+
K2

2
(n · curl n)

2

+
K3

2
|n× curl n|2 +

K2 +K4

2

(
tr(∇n)2 − (div n)2

)
,

(2) {FrankE}
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where Kj ’s are the Frank’s constants with the properties

2K1 ≥ K2 +K4, K2 ≥ |K4|, K3 ≥ 0.

The four terms on the right-hand-side of (2) are, respectively, the splay,
twist, bend, and saddle-splay modes (see, for example, [17, 16]).

The existence, regularity and the nature of defects of a global minimizer n for
general smooth domain Ω ⊂ R3 under a strong anchoring boundary condition
n|∂Ω = n0 are established in [1, 2, 10, 12], etc.. In particular, a typical global
minimizer exhibits point defects of the form ±x/|x|.

Nevertheless, a special type of line defects – disclination – has been examined
within the classical continuum theory of Oseen-Zöcher-Frank. This type of
defects was observed frequently. An example is the Schlieren texture in a thin
film between crossed polarizers. Several forms of disclinations are illustrated
in Figure 1. See [15, 3, 17, 16, 5] for more examples. In the figure, the origin
represents the disclination line perpendicular to the plane and the curves in the
plane are integral curves of director fields n projected onto the plane.
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Figure 1: Examples of disclinations: The Frank’s index in of disclinations is
defined in Section 2; θ is the angular component of the polar coordinates, ψ is
the angle made by n from the positive x-axis; The case with in = 2 can have
different structures, one with ψ(0) = π/2 and the others are equivalent (up to
deformations) to that with ψ(0) = 0. {sampleDS}

A mathematical examination of these line defects was first given by Oseen
([14]) and later by Frank ([9]) and by Dzyaloshinskii ([6]). In those works,
disclinations were described by critical points, solutions of the Euler-Lagrange
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equation of the energy functional F among special classes of director fields n,
and Frank also introduced an index to further characterize the complexity de-
grees of disclinations. See also excellent references, for examples, [5, 3, 17, 16],
for detailed discussions of this important property of nematic textures. On the
other hand, it lacks the study of minimality of these solutions in the literature.
The main contribution of this paper is on the minimality of disclination solu-
tions. It turns out the global minimizer of F does not possess defects but most
of other critical points of F do and are indeed local minimizers within the class
of planar director fields n defined in display (3).

We point out that the minimality of disclination solutions is examined within
the special class of director fields in display (3) and one has to exclude the
disclination line in order to have a finite energy F (r0 > 0 in (7)). If one allows
general director fields n, then the minimality result may be different. In fact, it
has been noticed independently by Cladis and Kléman ([4]) and by Meyer ([13])
that disclination solutions with even Frank’s indices can be deformed to other
form of solutions (with nontrivial z-components) without discontinuity – “Escape
of the disclination into the third dimension” (see also [5, 15, 16]). Of course,
the escaping solutions having no singularities do not provide an explanation of
disclinations. A new theory was proposed by Ericksen ([8], see also [12]) by
introducing an order parameter S to resolve the divergence of energy due to
singularity. This theory seems to need further development to give a better
understanding of line disclinations. We hope to study disclination solutions and
their minimality or stability with the new theory in the future.

To end this introduction, we describe the organization of the rest of this
paper. Following the books [3, 16, 17], a formulation of disclination problems
and the Frank’s index will be given in §2. In §3, we re-examine the Euler-
Lagrange equation for the energy functional in the framework of dynamical
systems, which allows us to establish the existence and properties of solutions
of the Euler-Lagrange equation in a much simpler way (Theorem 3.1). The
minimality of the solutions will be studied in §4 through the Jacobian equation
method. Here an observation makes the Jacobian equation completely solvable
and, in turn, we are able to completely determine the local minimality of all
critical points of F within a special class of director fields (Theorem 4.1).

2 Disclinations and Frank’s index
{DisIndex}

We start with the setup of the disclination problem following [3, 16, 17] closely.
Let

Ω ={(x, y, z) : r2
0 < x2 + y2 < R2

0, 0 < z < L}
={(r, θ, z) : r0 < r < R0, 0 < z < L}

be a hollow cylinder. Denote er and eθ the unit radial and angular vectors in
the plane perpendicular to the z-axis, respectively, that is, if ex, ey and ez are
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the unit vectors of Cartesian axes, then

er = cos θ ex + sin θ ey, eθ = − sin θ ex + cos θ ey.

Consider planar director fields n that depend on θ only:

n(r, θ, z) = cosφ(θ) er + sinφ(θ) eθ. (3) {director}

For n to be continuous, it is necessary that

φ(2π)− φ(0) = mπ for some m ∈ Z (4) {perbv}

since n = −n for nematic liquid crystals. Note that, in terms of the Cartesian
axes unit vectors,

n = cosψ(θ) ex + sinψ(θ) ey.

where the angle between n and the positive x-axis is

ψ(θ) = φ(θ) + θ and ψ(2π)− ψ(0) = φ(2π)− φ(0) + 2π. (5) {angle}

If φ(θ) is not constant, then the director field n defined in (3) becomes
discontinuous along the line {r = 0} or the z-axis and the line {r = 0} is called
the line of disclination ([9]) or wedge disclination in [5]. This is the reason the
special form (3) for director fields n is taken.

The Frank’s energy function (2) is reduced to

W(n,∇n) =
1

2r2
(φ′ + 1)2(K1 cos2 φ+K3 sin2 φ).

The total energy is

F(φ) := F(n) =
L

2
ln
R0

r0

∫ 2π

0

(φ′(θ) + 1)2(K1 cos2 φ(θ) +K3 sin2 φ(θ))dθ.

Note that the integrand above consists of two terms K1(φ′ + 1)2 cos2 φ and
K3(φ′ + 1)2 sin2 φ. They correspond to, respectively, the splay mode and bend
mode of the Frank’s energy function. There are no twist and saddle-splay modes
due to the restriction of planar director field n in (3).

We will denote

f(φ) = K1 cos2 φ+K3 sin2 φ and W (φ, φ′) = (φ′ + 1)2f(φ) (6) {energyfun}

so that the total energy is

F(φ) =
L

2
ln
R0

r0

∫ 2π

0

W (φ, φ′)dθ. (7) {angularF}

It is obvious that W (φ, φ′) = 0 if and only if φ′ = −1 or φ(θ) = −θ + φ0

for some constant φ0. In view of (5), ψ(θ) = φ0, that is, n is a constant
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vector. If φ′(θ) 6= −1, then the energy F(φ) approaches infinity as r0 → 0. This
particular situation shows a serious drawback of the Oseen-Zöcher-Frank theory
in handing line defects of liquid-crystals. In this sense, the results described in
this paper within the Oseen-Zöcher-Frank theory provide an “approximation”
for an understanding of the disclinations.

To characterize the complexity of disclination defects, Frank introduced an
index for director fields n of form in (3). For such a planar situation, the director
n lies in S1. Since we don’t distinguish −n from n for nematic liquid crystals,
instead of S1, we should have taken the projected S1 by identifying the opposite
points of S1. In particular, as a point moves counterclockwise along a closed
curve enclosed the origin, if the director field n covers k times the unit circle
S1, then it wraps up 2k times the projected S1. This motivates the following
definition of Frank’s index.

Definition 2.1. For a planar director field n in (3), the Frank’s index is

in =
ψ(2π)− ψ(0)

π
=
φ(2π)− φ(0)

π
+ 2. (8) {FrankInd}

It follows from the condition φ(2π)− φ(0) ∈ πZ in (4) that in ∈ Z.

We end this section with the formulation of the Euler-Lagrange equation for
the functional F in (7) and a brief discussion of Frank’s result for the elastically
isotropic case.

It is a standard result from calculus of variations that the Euler-Lagrange
equation for the functional F in (7) is(

∂W

∂φ′

)′
− ∂W

∂φ
= 0 in (0, 2π) (9) {ELnew}

with the boundary requirement, due to the periodic boundary condition (4),

∂W

∂φ′
(φ(0), φ′(0)) =

∂W

∂φ′
(φ(2π), φ′(2π)). (10) {ELbv}

It follows from the expressions of W (φ, φ′) and f(φ) in (6) that the Euler-
Langrange equation (9) becomes

f(φ)φ′′ +
1

2
fφ(φ)(φ′2 − 1) = 0 in (0, 2π), (11) {angularEL}

and the condition (10) is reduced to (φ′(2π) − φ′(0))f(φ(2π)) = 0, which is
equivalent to φ′(2π) = φ′(0) if K2

1 + K2
3 6= 0. In the sequel, we assume that

K1 > 0 and K3 > 0.

Frank ([9]) examined the elastically isotropic case, that is, K1 = K3 = K.
In this case, equation (11) becomes φ′′ = 0, and hence, φ(θ) = cθ+ φ0 for some
constants c and φ0. Note that φ′(2π) = φ′(0) is automatically satisfied. Also,
φ(2π)− φ(0) = 2cπ. Hence, the Frank’s index is in = 2c+ 2 and the energy is

F(φ) =
πLK

4
i2n ln

R0

r0
.
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Frank also illustrated the complexity of a director field n through its “flux lines”;
that is, integral curves of the director field n (see Figure 1). Note that, in terms

of ψ, the Frank’s solutions are ψ(θ) =
in
2
θ + φ0.

Dzyaloshinskii ([6]) late provided a complete result on the existence of solu-
tions for elastically anisotropic cases, i.e., K1 6= K3.

3 Solutions of Euler-Lagrange equation (11)
{EL}

In this section, we examine the Euler-Lagrange equation (11), reproducing the
result of Dzyaloshinskii ([6]) but in the framework of dynamical systems. Note
that equation (11) can be rewritten as

φ′ =
ρ

f(φ)
, ρ′ =

fφ(φ)

2f2(φ)
ρ2 +

1

2
fφ(φ) (12) {angularsys}

where f(φ) is defined in (6), and the boundary condition is

φ(2π)− φ(0) ∈ πZ and φ′(2π) = φ′(0). (13) {angularBV}

System (12) is a Hamiltonian system with a Hamiltonian function

H(φ, ρ) =
ρ2

2f(φ)
− 1

2
f(φ). (14) {ham}

Remark 3.1. A result from calculus of variations says, if L(t, y, y′) = L(y, y′)
does not depend on t explicitly, the Euler-Lagrange equation for the functional

I(y) =

∫ β

α

L(y, y′)dt

has an integral given by L−y′Ly′ . For the problem at hand, it is f(φ)φ′2−f(φ)
that agrees with the Hamiltonian function H above.

Note that, if we interchange K1 and K3 and shift φ by π/2 in system (12), we
end up with the same system with the same boundary condition (13). Therefore,
we will examine the existence of solutions of (12) and (13) for the case that
K1 > K3 only.

The equilibria of (12) are (φ∗, ρ∗) = (kπ, 0), (kπ + π/2, 0) for k ∈ Z. For
K1 > K3, one finds that the equilibria (mπ, 0)’s are centers with eigenval-

ues ±
√

K1−K3

K1
i and the equilibria (kπ + π/2, 0)’s are saddles with eigenvalues

±
√

K1−K3

K3
. There are heteroclinic loops between adjacent saddle equilibria.

The phase plane portrait is sketched in Figure 2.
We now consider non-equilibrium solutions.
Case 1. Non-equilibrium solutions inside a heteroclinic loop. We may only

consider non-equilibrium solutions inside the heteroclinic loop for φ ∈ (−π/2, π/2).
The boundary condition (13) implies that (φ(2π), ρ(2π)) = (φ(0), ρ(0)); that is,
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Figure 2: The phase portrait of system (12) for the case of K1 > K3 {firstfig}

the solution has to be a periodic solution with a period 2π. Since system (12) is
autonomous, we may assume that (φ(2π), ρ(2π)) = (φ(0), ρ(0)) = (φL, 0) with
φL ∈ (−π/2, 0). Note that, due to the symmetry of system (12), necessarily,
(φ(π), ρ(π)) = (φR, 0) with φR = −φL ∈ (0, π/2).

Using the Hamiltonian function (14), we have H(φ, ρ) = H(φR, 0); that is,

ρ2

f(φ)
− f(φ) = −f(φR) or φ′2 =

f(φ)− f(φR)

f(φ)
.

Let θ1 > 0 be the first value so that (φ(θ1), ρ(θ1)) = (φR, 0). Then, θ1 = π/k
for some positive integer k, and φ′(θ) > 0 for θ ∈ (0, π/k).

Therefore, for θ ∈ (0, π/k),

dφ

dθ
=

√
f(φ)− f(φR)

f(φ)
or dθ =

√
f(φ)

f(φ)− f(φR)
dφ.

Integrate over θ ∈ (0, π/k) and use the fact that f(φ) is even in φ to get

π/k =

∫ φR

φL

√
f(φ)

f(φ)− f(φR)
dφ = 2

∫ φR

0

√
f(φ)

f(φ)− f(φR)
dφ. (15) {inside}

With the substitution sinφ = sinφR sinα, we get∫ φR

0

√
f(φ)

f(φ)− f(φR)
dφ =

1√
K1 −K3

∫ π/2

0

√
G(α, φR)dα,
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where

G(α, φR) =
K1 + (K3 −K1) sin2 φR sin2 α

1− sin2 φR sin2 α
.

It follows from

∂

∂φR
G(α, φR) =

2K3

(1− sin2 φR sin2 α)2
sinφR cosφR sin2 α

that G(α, φR) is monotonically increasing in φR, and hence,

T (φR) := 2

∫ φR

0

√
f(φ)

f(φ)− f(φR)
dφ

is monotonically increasing in φR ∈ (0, π/2). Note that, as φR → π/2, the
orbit (φ(θ), ρ(θ)) approaches the heteroclinic orbit, and hence, T (φR) → ∞ as

φR → π/2. Also, T (φR) → π
√

K1

K1−K3
> π as φR → 0, where

√
K1−K3

K1
is the

frequency of the linearization of system (12) at the origin. We conclude that
there is no φR ∈ (0, π/2) satisfying (15); that is, there is no non-equilibrum
solution (φ(θ), ρ(θ)) of (12) and (13) whose orbit is enclosed in the heteroclinic
loop.

Case 2. Non-equilibrium solutions outside heteroclinic loops.
Since system (12) is autonomous and is symmetric with respect to the φ-axis,

we may consider (φ(0), ρ(0)) = (−π/2, ρ0) with ρ0 > 0 and (φ(2π), ρ(2π)) =
(mπ − π/2, ρ0) for some positive integer m. Use the Hamiltonian function to
get

f(φ)φ′2 = f(φ) + C0, (16) {phiprime}

where C0 = (ρ2
0 −K2

3 )/K3. Therefore,√
f(φ)

f(φ) + C0
dφ = dθ or T (C0) :=

∫ mπ−π/2

−π/2

√
f(φ)

f(φ) + C0
dφ = 2π.

Note that T (C0) → 0 as C0 → ∞ (or ρ0 → ∞), T (C0) → ∞ as C0 → −K3

(or ρ0 → 0), and T (C0) is a strictly decreasing function. We conclude that,
for any positive integer m, there is a unique C0 = C0(m) (ρ0 = ρ0(m)) that
provides a solution of (12) and (13) and C0(m) (and hence ρ0(m)) is increasing
in m. This solution has index in = m+ 2 since φ(2π)− φ(0) = mπ.

In summary, we have
{angularcase}

Theorem 3.1. Assume K1 > 0, K3 > 0 and K1 6= K3. Then, for any φ0 ∈
[−π/2, π/2) and m ∈ Z\{0}, there is a unique solution (φ∗, ρ∗) of (12) and (13)
such that φ∗(0) = φ0 and φ∗(2π) = φ0 +mπ. For m = 0, the only solutions are
the equilibrium solutions (φ∗, ρ∗) = (0, 0) or (φ∗, ρ∗) = (−π/2, 0) (necessarily,
φ0 = 0 or −π/2). For m > 0, ρ∗ > 0 (and hence φ′∗ > 0); for m < 0, ρ∗ < 0
(and hence φ′∗ < 0). For each m ∈ Z, the Frank’s index of the corresponding
solution(s) is in = m+ 2.
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For the special case in = 0 or m = −2, we note that φ′ < 0 and, correspond-
ingly,

T (C0) :=

∫ −2π−π/2

−π/2

√
f(φ)

f(φ) + C0
dφ = −2π.

The latter is true if and only if C0 = 0. It follows from (16) that φ′(θ) = −1
or φ(θ) = −θ + φ0 for some φ0. This gives that ψ(θ) = φ(θ) + θ = φ0. We
thus conclude that a critical point n of F has index in = 0 if and only if n is
constant. Exactly those constant director fields n are extendable to the z-axis
without defects.

4 Minimizers of the functional F(φ)
{mini}

In view of (7), the energy F(φ) is zero (global minimum value) if and only if
φ′(θ) = −1 or n is a constant director field. As discussed above, these global
minimizers do not exhibit disclinations. We now give a complete result on the
(local) minimality of other solutions in Theorem 3.1 as well as the solutions
considered by Frank for K1 = K3 among the director fields n defined in (3).

{suff_cond}
Theorem 4.1. Assume K1 > 0 and K3 > 0.

(i) If K1 = K3, then all critical points of F are minimizers.

(ii) If K3 < K1, then the critical point φ(θ) = mπ (or ψ(θ) = θ + mπ, i.e.
the pure radial director field n = ±er) of F is not a minimizer. All other
critical points of F are minimizers.

(iii) If K3 > K1, then the critical point φ(θ) = mπ+π/2 or ψ(θ) = θ+mπ+π/2
(i.e. the pure angular director field n = ±eθ) of F is not a minimizer.
All other critical points of F are minimizers.

Proof. It amounts to examine the second variation δ2F(φ∗) at a critical point
φ∗(θ) of F . We first consider a general functional

I(y) :=

∫ β

α

L(t, y, y′)dt, y(β)− y(α) = a.

Let y∗(t) be a critical point of I(y); that is, δI(y∗) = 0 and y∗(β)−y∗(α) = a.
Then, the second variation δ2I(y∗) of I at y∗ is given as follows. For any

function h with h(β)−h(α) = 0 so that, for any ε, (y∗+εh)(β)−(y∗+εh)(α) = a,

δ2I(y∗)[h] =
1

2

∫ β

α

(
Lyyh

2 + 2Lyy′hh
′ + Ly′y′h

′2) dt
=

1

2

∫ β

α

(
(Lyy − (Lyy′)

′)h2 + Ly′y′h
′2) dt

+
1

2
h2(β) (Lyy′(β, y∗(β), y′∗(β))− Lyy′(α, y∗(α), y′∗(α))) .
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Now let φ∗(θ) be a critical point of the functional F in (7). Note that,

Wφφ′(φ, φ
′) = 2fφ(φ)(φ′ + 1) = 2(K3 −K1) sin(2φ)(φ′ + 1),

and φ∗(2π) = φ∗(0) +mπ and φ′∗(2π) = φ′∗(0). We have that

Wφφ′(φ∗(0), φ′∗(0)) = Wφφ′(φ∗(2π), φ′∗(2π)),

and hence, the boundary term in the second variation δ2F(φ∗)[h] is zero. There-
fore,

δ2F(φ∗)[h] =
L

2
ln
R0

r0

∫ 2π

0

(
Ph′2 +Qh2

)
dθ,

where

P =P (θ) =
1

2

∂2W

∂φ′∂φ′
(φ∗(θ), φ

′
∗(θ))

=
1

2

∂2

∂φ′∂φ′
(
(φ′ + 1)2f(φ)

)
|φ∗(θ) = f(φ∗(θ)) > 0,

Q =Q(θ) =
1

2

∂2W

∂φ∂φ
(φ∗(θ), φ

′
∗(θ))−

1

2

d

dθ

(
∂2W

∂φ∂φ′
(φ∗(θ), φ

′
∗(θ))

)
=

1

2
(φ′∗ + 1)2fφφ(φ∗)−

d

dθ
((φ′∗ + 1)fφ(φ∗))

=
1

2
(φ′∗ + 1)2fφφ(φ∗)− φ′′∗fφ(φ∗)− (φ′∗ + 1)fφφ(φ∗)φ

′
∗

=
1

2
φ′2fφφ + φ′fφφ +

1

2
fφφ +

f2
φ

2f
(φ′2 − 1)− φ′2fφφ − φ′fφφ

=
1

2f
(φ′2 − 1)(f2

φ − ffφφ) =
ρ2

0 −K2
3

2K3f2
(f2
φ − ffφφ) = −C0

2

(
fφ
f

)
φ

(φ∗(θ)).

For K1 = K3, we have Q = 0, and hence, for all critical points φ∗ of
F , the second variation δ2F(φ∗)[h] ≥ 0. Therefore, all critical points of F
are minimizers in the elastically isotropic case examined by Frank ([9]). This
establishes statement (i).

We now consider elastically anisotropic case where K1 6= K3.
First of all, we consider the special case where (φ∗(θ), ρ∗(θ)) is an equilibrium

solution; that is, either (φ∗(θ), ρ∗(θ)) = (π/2, 0) or (φ∗(θ), ρ∗(θ)) = (0, 0). The
former corresponds to ψ(θ) = θ+ π/2 or the pure angular director field n = eθ,
and the latter corresponds to ψ(θ) = θ or the pure radial director field n = er.

If (φ∗(θ), ρ∗(θ)) = (π/2, 0), then P = K3 and Q = 1/2fφφ(π/2) = K1 −K3.
If K1 > K3, then Q > 0, and hence, n = eθ is a minimizer of F ; if K1 < K3,
then, for nonzero constant functions h,

δ2F(φ∗)[h] =
L

2
ln
R0

r0

∫ 2π

0

(K1 −K3)h2dθ < 0,

and hence, n = eθ is not a local minimizer.
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If (φ∗(θ), ρ∗(θ)) = (0, 0), then P = K1 and Q = 1/2fφφ(0) = K3 − K1. If
K3 > K1, then Q > 0, and hence, n = er is a minimizer of F ; if K3 < K1, then,
for nonzero constant functions h,

δ2F(φ∗)[h] =
L

2
ln
R0

r0

∫ 2π

0

(K3 −K1)h2dθ < 0,

and hence, n = er is not a local minimizer.
It remains to show that all other critical points of F are minimizers.
A necessary condition for nonnegative definiteness of δ2F(φ∗) is P ≥ 0. For

Dirichlet boundary conditions φ(0) = A and φ(2π) = B, a sufficient condition
is given in terms of conjugate points to θ = 0 of the Euler equation for the
second variation δ2F(φ∗) or the Jacobian equation for the original functional
F(φ∗). For the boundary condition φ(2π)−φ(0) ∈ πZ, we will follow the idea for
Dirichlet boundary conditions to examine the positive definiteness of δ2F(φ∗).
Recall the Jacobian equation is, with prime for the derivative with respect to θ,

−(Pz′)′ +Qz = 0 or − f(φ∗)z
′′ − fφ(φ∗)φ

′
∗z
′ − C0

2

(
fφ
f

)
φ

(φ∗)z = 0. (17) {Jacbeqn}

A new observation is crucial for the study of the Jacobian equation (17).
Since (φ∗(θ), ρ∗(θ)) is now not an equilibrium, Theorem 3.1 implies that φ∗(θ)
is strictly monotone, and hence, φ = φ∗(θ) is a change of variable. Let z(θ) =
Z(φ∗(θ)). Then,

z′ = Zφφ
′
∗, z′′ = Zφφφ

′2
∗ + Zφφ

′′
∗ .

Therefore, the Jacobian equation (17) becomes

fφ′2∗ Zφφ + fφ′′∗Zφ + fφφ
′2
∗ Zφ +

C0

2

(
fφ
f

)
φ

Z = 0. (18) {newJacbeqn}

It follows from

φ′2∗ =
f(φ∗) + C0

f(φ∗)
and f(φ∗)φ

′′
∗ = −1

2
fφ(φ∗)(φ

′2
∗ − 1)

that

(f + C0)Zφφ −
C0

2

fφ
f
Zφ +

(f + C0)fφ
f

Zφ +
C0

2

(
fφ
f

)
φ

Z

=(f + C0)Zφφ + fφZφ +
C0

2

fφ
f
Zφ +

C0

2

(
fφ
f

)
φ

Z = 0,

or

((f + C0)Zφ)φ +
C0

2

(
fφ
f
Z

)
φ

= 0.

Therefore,

(f + C0)Zφ +
C0

2

fφ
f
Z = D,

11



and hence, with φ∗(0) = φ0,

Z(φ) = S(φ)Z(φ0) +D

∫ φ

φ0

S(φ)S−1(t)(f(t) + C0)−1dt,

where

S(φ) = exp

{
−C0

2

∫ φ

φ0

fφ(t)

f(t)(f(t) + C0)
dt

}
.

Let Z(φ0) > 0. With D = 0, the particular solution Z(φ) = S(φ)Z(φ0) > 0
for all φ. Thus, z(θ) = Z(φ∗(θ)) is a nonzero solution of the Jacobian equation
(17). We claim that if

w(θ) =− z′(θ)

z(θ)
P (θ) = −Zφ(φ∗(θ))φ

′
∗(θ)

Z(φ∗(θ))
f(φ∗(θ))

=
C0φ

′
∗(θ)fφ(φ∗(θ))

2(f(φ∗(θ)) + C0)
z(θ),

(19) {w}

then

P (θ)(Q(θ) + w′(θ)) = w2(θ), z(0) = z(2π) and w(0) = w(2π). (20) {claim}

Assume the claim (20) for the moment. We then have

Pz′2 +Qz2 + (wz2)′ =Pz′2 + 2wzz′ + (Q+ w′)z2 = P
(
z′ +

w

P
z
)2

.

and (wz2)(0) = (wz2)(2π) so that∫ 2π

0

(
Pz′2 +Qz2

)
dθ =

∫ 2π

0

(
Pz′2 +Qz2 + (wz2)′

)
dθ − w(θ)z2(θ)|2π0

=

∫ 2π

0

P
(
z′ +

w

P
z
)2

dθ ≥ 0.

Since, for any θ0, the translation φ(θ) = φ∗(θ + θ0) is also a critical point
of F giving the same energy as that of φ∗(θ), this produces a one-parameter
family of minimizers for F .

We now complete the proof by establishing the claim (20).
Proof of (20). The first part of the claim (20) follows directly from that z(θ)
is a solution of (17). In view of (19), it suffices to show that z(0) = z(2π)
or Z(φ∗(2π)) = Z(φ∗(0)). The latter is equivalent to S(φ∗(2π)) = 1. Now,

12



suppose φ∗(2π) = φ∗(0) +mπ. Then,∫ φ∗(2π)

φ0

fφ(t)

f(t)(f(t) + C0)
dt =

∫ φ0+mπ

φ0

(K3 −K1) sin(2t)

f(t)(f(t) + C0)
dt

=

∫ mπ

0

(K3 −K1) sin(2t)

f(t)(f(t) + C0)
dt

=m

∫ π

0

(K3 −K1) sin(2t)

f(t)(f(t) + C0)
dt

=m(K3 −K1)

∫ π/2

0

sin(2t)

f(t)(f(t) + C0)
dt

+m(K3 −K1)

∫ π

π/2

sin(2t)

f(t)(f(t) + C0)
dt.

(21) {est1}

With the substitution s = π − t in the second integral above, we get∫ π

π/2

sin(2t)

f(t)(f(t) + C0)
dt =

∫ 0

π/2

sin(2s)

f(s)(f(s) + C0)
ds

=−
∫ π/2

0

sin(2s)

f(s)(f(s) + C0)
ds.

(22) {est2}

It follows from (21) and (22) that∫ φ∗(2π)

φ0

fφ(t)

f(t)(f(t) + C0)
dt = 0

and hence,

S(φ∗(2π)) = exp

{
−C0

2

∫ φ∗(2π)

φ0

fφ(t)

f(t)(f(t) + C0)
dt

}
= 1.

This completes the proof.
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