
Non-localness of excess potentials and boundary value

problems of Poisson-Nernst-Planck systems for ionic flow:

a case study

Lili Sun∗ and Weishi Liu†

Abstract

Poisson-Nernst-Planck (PNP) type systems are basic primitive models for
ionic flow through ion channels. Important properties of ion channels, such as
current-voltage relations, permeation and selectivity, can be extracted from so-
lutions of boundary value problems (BVP) of PNP type models. Many issues
of BVP of PNP type systems with local excess potentials (including particularly
classical PNP systems that treat ions as point-charges) are extensively exam-
ined analytically and numerically. On the other hand, for PNP type systems
with nonlocal excess potentials, even the issue of well-posedness of BVP is poorly
understood. In fact, the formulation of correct boundary conditions seems to
be overlooked, even though complications of ionic behavior near the boundaries
(locations of applied electrodes) have been long experienced in experiments and
simulations. PNP type systems with nonlocal excess potentials can be viewed
as functional differential systems and, for many approximation models of non-
local excess potentials, as differential equations with both delays and advances.
Thus PNP type systems with nonlocal excess potentials have infinite degree of
freedoms and BVP with the traditional “two-point-boundary-conditions” would
be severely under determined. The mathematical theory for PNP with nonlocal
excess potential would be significantly different from that for PNP with local
excess potentials. Taking into considerations of experimental designs of ionic
flow through ion channels and in a relatively simple setting, we present a form
of natural “boundary conditions” so that the corresponding BVP of PNP type
systems with nonlocal excess potentials are generally well-posed. This work, at
an early stage toward a better understanding of related issues, provides some
insights on interpretations of experimental designs of imposing boundary condi-
tions and for correct formulations of numerical simulations, and hopefully, will
stimulate further mathematical analysis on this important issue.
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1 Introduction

In this introduction, we discuss the basic issue treated in this work: Correct formula-
tions of boundary conditions for boundary value problems (BVP) of Poisson-Nernst-
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Planck (PNP) type models with nonlocal excess potentials. We will first briefly de-
scribe the background, in layman’s terms, of ionic flow through ion channels and
experimental designs and measurements of the so-called I-V relations, the primitive
models of PNP type systems and the boundary conditions relevant to the experi-
mental designs. A major difference between PNP type models with nonlocal excess
potentials and those with local excess potentials will be addressed. We then provide,
in a relatively simpler setting, a formulation of natural boundary conditions for PNP
with nonlocal excess potentials.

1.1 Ion channels, ionic flow, and experiments

The process of diffusion and migration of charged particles plays a critical role in
understanding of natures and in inventions of modern electric devices ([5, 11, 16, 17,
22, 24, 25, 55, 56, 63]). For examples, chemical sciences deal with charged molecules
in water ([10, 11, 21, 31]), all of biology occurs in plasmas of ions and charged organic
molecules in water ([3, 18, 39, 68]), and semiconductor technology controls the mi-
gration and diffusion of quasi-particles of charge in transistors and integrated circuits
([61, 67, 70]). It is clear that electrodiffusion is of great importance.

In this work, we focus on a specific electrodiffusion problem of ionic flows through
ion channels. Ion channels are “nano-pores” of large proteins embedded on cell mem-
branes with one end opens to the intracellular region and the other to the extracellular
region. They provide major pathways for ions to flow between inside and outside (two
macroscopic reservoirs) of cells that produces electric signals to control most of bio-
logical functions. In laboratory designs of experiments on ion channel properties, two
large baths (reservoirs) are separated by the ion channel and are filled with ionic solu-
tions with ion species dissolved in water (solvent). Transmembrane electric potential
(voltage) is applied, together with the concentration gradient, to create ionic flows
through the ion channel. Electrical properties of ionic flows can be measured and ion
channel properties can be analyzed from the experimental measurements. For exam-
ple, once the ionic movement approaches a steady-state, the corresponding current I
can be recorded. The experiment is run for a range of voltage values V which results
in an I-V relation: The dependence of the current I on the applied voltage V for fixed
ionic concentrations in the baths. One can extract a great deal of information on ion
channel properties such as permeation, selectivity, etc., from I-V relations.

Macroscopic boundary conditions imposed in reservoirs often introduce boundary
layers of concentration and charge, which may not meet the expectation of experimen-
tal design perfectly. Those complications are not well-understood and cause problems
for the measurements of I-V relations, to say the least. To remedy this difficulty, in
practice, one implements the four-electrode (or, four-terminal) technique. Two elec-
trodes (outer electrodes) are positioned in the baths and away from the channel to
control “boundary conditions”, and the other two electrodes (inner electrodes) near
the interfaces of the channel and the baths are used to measure quantities from the
ionic flow through the ion channel. This four-electrode technique seems to resolve the
problem, for practical purpose, of boundary conditions well. A couple of questions
remain: What causes the complications near the outer electrodes? What is the mean-
ing of boundary conditions near the outer electrodes? These are important questions
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for a true understanding of the experimental designs and measurements. We will give
a closer look of these questions in concrete terms of PNP type models for ionic flows
in the next part and more discussions will be given in Section 2.

1.2 PNP type models and the issue of boundary conditions

PNP type systems are the basic primitive models for ionic flows. There are different
levels of sophistications in PNP models. The classical PNP, using only ideal electro-
chemical potentials, is at low resolution which treats ions as point-charges. This is
reasonable only for near infinite dilute ionic mixtures. The classical Debye-Hückel the-
ory for electrolyte solutions is based on the equilibrium theory – Poisson-Boltzmann
approximations – of the classical PNP models. The classical PNP models for ionic
flows have been analyzed to a great extent ([1, 4, 7, 8, 9, 19, 20, 27, 28, 40, 42, 44,
47, 49, 50, 54, 57, 58, 64, 65, 71]).

For living organisms, ion sizes do play crucial roles. For example, potassium (K+)
and sodium (Na+) have significantly different roles and the main distinction between
them is their different ion sizes. To capture ion size effects in PNP models, one needs
to include the excess (beyond the ideal) components of the electrochemical potentials.
There are two types of models for excess components, local and nonlocal. Here local
models refer to those models of which excess components at a point depend on the
ionic concentrations at the given point only, and nonlocal models are those so that
excess components at a point depend on the ionic concentrations in a neighborhood
of the given point.

Many issues of BVPs of PNP systems with local excess potentials (including partic-
ularly classical PNP systems) are extensively examined analytically and numerically
([2, 14, 33, 34, 35, 36, 41, 43, 45, 46, 48, 52, 53, 66]). However, for PNP systems
with nonlocal excess potentials, even the issue of well-posedness of BVPs is poorly
understood. In fact, the formulation of correct boundary conditions seesm to be over-
looked, even though complications of ionic flow near the boundaries have been long
experienced in experiments as mentioned above. PNP systems with nonlocal excess
potentials can be viewed as functional differential systems and, for many approxi-
mation models of the nonlocal excess potentials, as differential equations with both
delays and advances. To bring the issue up in a simple way, we consider an initial
value problem for a delay-differential equation

u′(x) = f(u(x− r)), u ∈ Rn (1.1)

with a constant delay r > 0. The initial value problem for this delay-differential
equation requires the knowledge of

u(x) = u0(x) for x ∈ [−r, 0], (1.2)

more than the single value u(0) as for ordinary differential equations. This is sim-
ply because that delay-differential equations are of infinite degree of freedoms and
the phase space of (1.1) should be an infinite dimensional function space, for ex-
ample, C0([−r, 0]) (see, for example, [37, 38]). Thus, to determine one solution, an
infinite number of conditions has to be prescribed, as that in (1.2) for system (1.1).
Therefore, for PNP systems with nonlocal excess potentials, BVP with the traditional
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“two-point-boundary-conditions” would be severely under determined. Initial value
problems for functional differential equations such as (1.1) are well-understood. How-
ever, it is not the case for boundary value problems of functional differential equations.
A correct formulation of boundary conditions for functional differential equations is
still a serious concern, in general. In this work, taking into considerations of experi-
mental designs of ionic flow through ion channels and in a relatively simple setting,
we present a form of natural “boundary conditions” so that the corresponding BVP of
PNP systems with nonlocal excess potentials is generally well-posed. Our formulation
of natural “boundary conditions” will be provided in Section 2 after the description of
the PNP models. This work, at an early stage toward a better understanding of the
issues, provides some insights on interpretations of experimental designs of imposing
boundary conditions and, hopefully, stimulates further mathematical analysis on this
important issue.

The rest of the paper is organized as follows. In Section 2, we recall the three-
dimensional PNP model and its quasi-one-dimensional version. The excess electro-
chemical potential will be carefully discussed and the boundary conditions will be
introduced. In Section 3, we state our main result and describe a strategy for the
proof, and provide a preparation for the proof. The main result is established in
Section 4. We end the paper with a brief discussion in Section 5.

2 BVPs of PNP systems

2.1 Three-dimensional and quasi-one-dimensional PNP systems

We start with a brief description of a three-dimensional Poisson-Nernst-Planck type
model for ionic flows. As an approximation, we consider an ion channel Ω0 with two
baths U− and U+ attached to its ends (see Figure 1):

U− ={r = (X,Y, Z) : b− < X < b0, Y
2 + Z2 < g2(X)},

Ω0 ={r = (X,Y, Z) : b0 ≤ X ≤ b1, Y 2 + Z2 < g2(X)},
U+ ={r = (X,Y, Z) : b1 < X < b+, Y

2 + Z2 < g2(X)},
(2.1)

where g is a smooth function, b− < b0 < b1 < b+.

Figure 1: Representation of channel Ω0 and baths U±.

4



The primitive (steady-state) Poisson-Nernst-Planck type systems for ion flow
through the channel is (see, for example, [34, 36])

−∇ · (εr(r)ε0∇Φ) =e
( n∑
j=1

zjCj +Q(r)
)
,

∇ · Jk = 0, −Jk =
1

kBT
Dk(r)Ck∇µk, k = 1, 2, · · · , n

(2.2)

where e is the elementary charge, kB is the Boltzmann constant, T is the absolute
temperature; Φ is the electric potential, Q(r) is the permanent charge of the channel
(Q(r) = 0 for r 6∈ Ω0), εr(r) is the relative dielectric coefficient, ε0 is the vacuum
permittivity, n is the number of distinct types of ion species; for the kth ion species,
Ck is the concentration (number density), zk is the valence (number of charges per
particle), µk is the electrochemical potential, Jk is the flux density, and Dk(r) is the
diffusion coefficient.

On the basis that a typical ion channel is narrow and ionic flow along its lon-
gitudinal direction dominates the channel properties, a quasi-one-dimensional PNP
model is proposed in ([57]):

− 1

g2(X)

d

dX

(
g2(X)εr(X)ε0

d

dX
Φ
)

= e
( n∑
j=1

zjCj +Q(X)
)
,

d

dX
Jk = 0, − Jk =

1

kBT
πg2(X)Dk(X)Ck

d

dX
µk, k = 1, 2, · · · , n.

(2.3)

Note that πg2(X) is the area of the cross-section of the channel over X. The ion
channel Ω0 is represented by the interval [b0, b1] and the two baths U− and U+ are
represented by the intervals (b−, b0) and (b1, b+), respectively.

In special cases, this reduction has been mathematically justified to a certain
extent in [51].

2.2 Electrochemical potentials

For the kth ion species, the electrochemical potential

µk = µidk + µexk

where the ideal component µidk associated to the point-charge part is given by

µidk (X) = zkeΦ(X) + kBT ln
Ck(X)

C0
(2.4)

with some characteristic concentration C0, and the excess component µexk (X) accounts
for finite size effect of charges. The excess component µexk consists of two components:
the hard-sphere component µHSk and the electrostatic component µESk for screening
effects, etc. of finite sizes of charges ([29, 30, 32, 59, 60, 69], etc.); that is,

µexk = µHSk + µESk .

Excess components A practical difficulty is that an exact form for the functional
dependence of the excess component µexk (X) on {Cj} is not available and is ac-
tually hard to expect. Approximation models for µexk (X) had been proposed and
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tested for a long time. The first local- or pointwise-dependent approximation model
µHSk (X) = −kBT ln

(
1 −

∑
vjCj(X)

)
for the hard-sphere potential was proposed

by Bikerman ([13]), where vj is the volume of the jth ion species (for our one-
dimensional version, vj = 2rj where rj is the radius of the ion). Bikerman’s model is
though not ion specific in the sense that µHSk (X) is taken to be the same for all k’s.
Refined local-dependent models for hard-sphere potentials µHSk (X) include those of
Carnahan-Starling and Boublik-Mansoori-Carnahan-Starling (see, e.g., [6, 12]) that
are ion specific. Modeling for the excess electrostatic component µESk is less well
developed. A major breakthrough was made by Rosenfeld ([59, 60]). He treated ions
as charged spheres and introduced novel ideas for an approximation of µexi (X) based
on the geometry of spheres. An outcome of Rosenfeld’s theory is an approximation
of µexk (X) depending non-locally on the concentrations {Cj} over a neighborhood of
X with size comparable to the characteristic diameter of the ionic mixture. Accuracy
of Rosenfeld’s model and its further refinements has been demonstrated by a number
of applications ([35, 62, 69], etc.); in particular, applications to ion channel problems
have been conducted numerically in [15, 33, 34, 36], etc. and they have shown a great
improvement.

We will consider a general form of the excess components and impose conditions
that are consistent with available approximation models. The excess component
µexk (X) represents short range interactions and is typically approximated by func-
tionals in {Cj} as convolution integrals over a range of size (rj + rk)’s with rj ’s being
the radius of the jth ion species. It has the general form

µexk (X) = kBT
n∑
j=1

∫ X+rjk

X−rjk
C(2)kj (X − Y )Cj(Y )dY,

where rjk := rj + rk and C(2)kj ’s are the so-called second order direct correlation func-

tions. The direct correlation functions C(2)kj ’s depend on {Cl} and {rl}. The explicit
dependence is not completely understood and is still an active research topic.

In this work, to capture the essence of the nonlocal feature of excess potentials,
we will take a simple form of excess potentials

1

kBT

dµexk
dX

(X) = rFk
(
C1(X ± r1k), C2(X ± r2k), · · · , Cn(X ± rnk)

)
, (2.5)

where r = max{rk : 1 ≤ k ≤ n} and Fk is a smooth function in its argument(
C1(X− r1k), C1(X+ r1k), C2(X− r2k), C2(X+ r2k), · · · , Cn(X− rnk), Cn(X+ rnk)

)
,

and, for easy of notation, the above argument of Fk in (2.5) is denoted by(
C1(X ± r1k), C2(X ± r2k), · · · , Cn(X ± rnk)

)
.

The appearance of the factor r in front of Fk in (2.5) is due to the fact that
µexk → 0 as r → 0.

6



2.3 Boundary conditions

Complications, such as boundary layers, caused by applied boundary conditions have
been well-recognized in experiments on ion channel properties, which, to say the
least, create some concerns in interpretation of experimental designs for measuring
I-V relations. This motivated the four-electrode (or, four-terminal) technique: two
electrodes (outer electrodes) are inserted in the left and right bathes away from the
channel, respectively, to be viewed as providing boundary conditions and the other
two (inner electrodes) near the left and right open ends of the channel – the interfaces
of the channel and the bathes, where the measurements of the current and voltage
are made that are used to construct the I-V curve. This four-electrode technique,
bypassing the complications at the outer electrodes, seems to be successful at least
for practical purposes. But it does not completely resolve the concern in terms of the
BVP of PNP type models and should be viewed as a call for further investigation for
the purpose of a true understanding.

In this work, we attempt to put an initial effort for such a task. It is hoped that
the result in this paper would identify the key issue and provide an insight for an
ultimate understanding of the problem.

As a rough approximation, one may view the experimental designs imposing
boundary conditions at two points. Of course, this is oversimplified and too ide-
alized. We propose that the experimental designs impose the concentrations in two
appropriate intervals representing the outer electrodes regions in the baths, respec-
tively, and the transmembrane potential difference is imposed between two points.
More precisely, let

δ∗ = max{rjk = rj + rk : 1 ≤ j, k ≤ n}. (2.6)

Since rj ’s are the radius of the jth ion species, they are much smaller than the length
scales of the baths on both sides. Therefore,

δ∗ � min{b+ − b1, b0 − b−}.

Choose a0 ∈ (b−, b0) and a1 ∈ (b1, b+) (see Fig. 1) so that

[a0 − δ∗, a0] ⊂ (b−, b0) and [a1, a1 + δ∗] ⊂ (b1, b+).

Here, a0 is viewed as the center of the outer electrode region in the left bath U− and
a1 is viewed as the center of the outer electrode region in the right bath U+.

We propose the following boundary conditions,

Φ(a0) =V, Ck(X) = Lk(X) > 0 for X ∈ [a0 − δ∗, a0],
Φ(a1) =0, Ck(X) = Rk(X) > 0 for X ∈ [a1, a1 + δ∗],

(2.7)

where V is a given constant, Lk’s and Rk’s are given continuous functions on their
respective intervals. We emphasize that the boundary conditions for the electric po-
tential Φ are imposed at two points and the boundary conditions of the concentrations
Ck’s are imposed over intervals.

We will assume the electroneutrality boundary conditions at X = a0 and a1,

n∑
s=1

zkLk(a0) =
n∑
s=1

zkRk(a1) = 0. (2.8)
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This assumption is consistent with the experimental designs.

The main purpose of this paper is to show that BVP (2.3) and (2.7) is well-
posed; that is, under further conditions, we show that BVP (2.3) and (2.7) has a
unique solution. In general, the well-posedness of BVP is more complicated than
that of initial value problems, in particular, BVP may have finite or even infinite
(but discrete) many solutions.

In Section 5, among other issues, we comment on the specific choice of δ∗ in (2.6)
used in defining the boundary conditions (2.7).

2.4 Dimensionless of (2.3) and (2.7)

The following rescaling or its variations have been widely used for convenience of
mathematical analysis.

For a bounded function g(X) defined on an interval U , we will denote

‖g‖ = sup{|g(X)| : X ∈ U}.

For example, for the functions Lk and Rk in (2.7) defined on different intervals,

‖Lk‖ = sup{|Lk(X)| : X ∈ [a0−δ∗, a0]} and ‖Rk‖ = sup{|Rk(X)| : X ∈ [a1, a1+δ∗]}.

Set

C0 = max
1≤k≤n

{
‖Q‖, ‖Lk‖, ‖Rk‖

}
, D0 = sup

1≤k≤n
{‖Dk‖}, ε̄r = ‖εr‖. (2.9)

We make the re-scaling

ε2 =
ε̄rε0kBT

e2(a1 − a0)2C0
, x =

X − a0
a1 − a0

, h(x) =
πg2(X)

(a1 − a0)2
, δ0 =

δ∗
a1 − a0

,

ε̂r(x) =
εr(X)

ε̄r
, Dk(x) =

Dk(X)

D0
, Q(x) =

Q(X)

C0
,

φ(x) =
e

kBT
Φ(X), ck(x) =

Ck(X)

C0
, Jk =

Jk
(a1 − a0)C0D0

.

(2.10)

Note that the intervals [a0, a1], [a0 − δ∗, a0], and [a1, a1 + δ∗] in the X-variable corre-
spond to intervals [0, 1], [−δ0, 0], and [1, 1 + δ0] in the x-variable, respectively.

The dimensionless parameter ε = λD/(a1 − a0) is an important physical parame-
ter, where

λD =

√
ε̄rε0kBT

e2C0

is the so-called Debye length that describes screening of electric potential effects
on charges. Our main result is valid for small ε. For ion channel problems, the
parameter ε is small mostly because of the length scale (a1−a0) and the characteristic
concentration C0 of the ionic mixture. For example, if C0 = 1(M), a1− a0 = 25(nm),
ε̄r = 80, then ε is of order 10−2 ∼ 10−3. We comment that, in other electrochemical
systems, the value of ε may not be small.
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In terms of the new variables, the BVP (2.3) and (2.7) becomes

ε2

h(x)

d

dx

(
ε̂r(x)h(x)

dφ

dx

)
= −

n∑
s=1

zscs −Q(x),
dJk
dx

= 0,

Dk(x)h(x)
dck
dx

+ zkDk(x)h(x)ck
dφ

dx
+

1

kBT
Dk(x)h(x)ck

d

dx
µexk = −Jk,

(2.11)

with boundary conditions

φ(0) = V0, ck(x) = Lk(x) for x ∈ [−δ0, 0]

φ(1) = 0, ck(x) = Rk(x) for x ∈ [1, 1 + δ0],
(2.12)

where, from (2.7),

V0 =
e

kBT
V, Lk(x) =

Lk(a0 + (a1 − a0)x)

C0
, Rk(x) =

Rk(a0 + (a1 − a0)x)

C0
.

Recall r = max{rk : 1 ≤ k ≤ n}. Set

ν = r(a1 − a0)C0 and λjk =
rjk

a1 − a0
. (2.13)

It follows from (2.5) that

1

kBT

d

dx
µexk (x) =r(a1 − a0)Fk

(
C0c1

(
x± λ1k

)
, C0c2

(
x± λ2k

)
, · · · , C0cn

(
x± λnk

))
≈r(a1 − a0)C0fk

(
c1
(
x± λ1k

)
, c2
(
x± λ2k

)
, · · · , cn

(
x± λnk

))
=νfk

(
c1
(
x± λ1k

)
, c2
(
x± λ2k

)
, · · · , cn

(
x± λnk

))
,

where, in the second step, we use the reason that Fk’s are often approximated by
linear mappings.

Note that ν and λjk’s are dimensionless parameters, and λjk ≤ δ0 since rjk ≤ δ∗.
Thus, we will take the following general form for a model of the excess component

1

kBT

d

dx
µexk (x) = νfk

(
c1(x± λ1k), c2(x± λ2k), · · · , cn(x± λnk)

)
. (2.14)

3 BVP (2.11) and (2.12) for n = 2 and Q = 0

We will examine the well-posedness of BVP (2.11) and (2.12) for the simple cases
where

n = 2, z1 > 0 > z2, Q(x) = 0, Dk(x) = 1, ε̂r(x) = 1. (3.1)

Note that, we could combine Dk(x) and ε̂r(x) with h(x). Thus, the assumption that
Dk(x) = 1 and ε̂r(x) = 1 is not critical. But the assumption that Q(x) = 0 is not
easy to remove for the concrete results in this paper and we will get back to this issue
in the future.
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3.1 A Strategy for the well-posedness of BVP

We describe our strategy for the well-posedness of BVP (2.11) and (2.12).
Recall the functions Lk(x) and Rk(x) from (2.12). Let

X0 =
{
C = (c1, c2) ∈ C0

(
[0, 1],R2

)
: ck(0) = Lk(0), ck(1) = Rk(1)

}
equipped with the usual norm ‖C‖ = max

{
|c1(x)|+ |c2(x)| : x ∈ [0, 1]

}
, and let

Xδ0 =
{
C ∈ C0

(
[−δ0, 1 + δ0],R2

)
: ck(x)|[−δ0,0] = Lk(x), ck(x)|[1,1+δ0] = Rk(x)

}
equipped with the norm ‖C‖ = max

{
|c1(x)|+ |c2(x)| : x ∈ [−δ0, 1 + δ0]

}
.

The model (2.14) for µexk then allows us to define a mapping

G : Xδ0 → C0
(
[0, 1],R2

)
by G(C)(x) = Ĝ(x) = (Ĝ1(x), Ĝ2(x)), (3.2)

where, for k = 1, 2,

Ĝk(x) = νh(x)ck(x)fk

(
c1(x− λ1k), c1(x+ λ1k), c2(x− λ2k), c2(x+ λ2k)

)
. (3.3)

Note that, with the given Lk(x) and Rk(x) in (2.12), one can uniquely extend
any function C ∈ X0 to a function Ĉ ∈ Xδ0 . This gives a one-to-one and onto
correspondence between X0 and Xδ0 . We denote the correspondence by

E : X0 → Xδ0 by E(C) = Ĉ. (3.4)

Also, for ρ > 0 to be determined later on, let

Yρ =
{
G = (G1, G2) ∈ C0

(
[0, 1],R2

)
: ‖G‖ ≤ ρ

}
.

We now introduce an auxiliary boundary value problem as did in [45]. For any
(G1, G2) ∈ Yρ, consider the auxiliary boundary value problem (auxi-BVP)

ε2

h(x)

d

dx

(
h(x)

d

dx
φ
)

= −z1c1 − z2c2,

dJk
dx

= 0, h(x)
dck
dx

+ zkh(x)ck
dφ

dx
+Gk(x) = −Jk, k = 1, 2

(3.5)

with the boundary conditions

φ(0) = V0, ck(0) = Lk(0); φ(1) = 0, ck(1) = Rk(1). (3.6)

For each given G ∈ Yρ, auxi-BVP (3.5) and (3.6) is a usual two-point-boundary
value problem. It is shown in [45] that, for ε > 0 small, auxi-BVP (3.5) and (3.6) has
a unique solution (φ, c1, c2, J1, J2). Based on this conclusion, we define a mapping

Ψε : Yρ → X0 by Ψε(G1, G2) = (c1, c2). (3.7)

The composition G ◦ E ◦Ψε gives a mapping from Yρ → C0([0, 1],R2).
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Finally, BVP (2.11) and (2.12) is reduced to a fixed point problem of the mapping

G ◦ E ◦Ψε : Yρ → Yρ;

that is, to establish the well-posedness of BVP (2.11) and (2.12), it suffices to show
that, for some choices of ρ > 0, the mapping G ◦ E ◦Ψε maps Yρ into itself and has a
fixed point.

We now state our main result whose proof will be given in Section 4 after a
preparation of several estimates.

For the boundary concentrations Lk(x) and Rk(x) in (2.12), denote

ML = max
x∈[−δ0,0]

{Lk(x) : k = 1, 2} and MR = max
x∈[1,1+δ0]

{Rk(x) : k = 1, 2},

and set

M = max{ML, MR} and H(x) =

∫ x

0
h−1(s)ds. (3.8)

Recall that r = max{r1, r2} and C0 = M from (2.9) and Q = 0. Denote f = (f1, f2)
where f1 and f2 are the functions in (2.14). Note that f is a mapping from R4 to R2.
We denote its derivative by Df and the norm of Df by ‖Df‖.

Theorem 3.1. Assume (3.1) and that excess potentials µexk ’s are given in (2.14). If

ν = r(a1 − a0)C0 <
1

‖h‖H(1)(3‖f‖+M‖Df‖)
, (3.9)

then, for ε > 0 small, BVP (2.11) and (2.12) has a unique solution. More precisely,
if

νM‖h‖‖f‖
1− 2ν‖h‖‖f‖H(1)

≤ ρ < 1

2ν‖h‖‖Df‖H2(1)
− ‖f‖

2‖Df‖H(1)
− M

2H(1)
, (3.10)

then, for ε > 0 small, G ◦ E ◦Ψε : Yρ → Yρ and it is a contraction.

It is easy to check that, under the condition (3.9) on ν, the quantity on the far
right-hand side in (3.10) is strictly greater than the quantity on the far leftt-hand
side, which guarantees the existence of ρ. The condition (3.9) also implies

ν <
1

‖h‖H(1)
min

{
1

2‖f‖
,

1

‖f‖+M‖Df‖

}
, (3.11)

which will be used in Section 4.

Remark 3.2. Roughly speaking, the condition (3.9) will be satisfied when C0 is not
so large; that is, when the ionic mixture is not extremely crowded. But, for extremely
crowded ionic mixtures where C0 is very large, the condition (3.9) may not be satisfied.
Since the condition is only a sufficient condition for our result, we cannot draw the
conclusion that there does not exist a solution when C0 is large. It would be interesting
to know what happens to the existence of solutions when (3.9) fails. This is important
since it might relate to the question whether or not PNP type continuum models are
valid for extremely crowded ionic mixtures.
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3.2 Properties of G, E and Ψε

We will examine the mappings G, E and Ψε for the necessary properties; in particular,
we will estimate the Fréchet derivatives of these mappings.

Note that, for (c1, c2) ∈ X0, the tangent space T(c1,c2)X0 of X0 at (c1, c2) is

T(c1,c2)X0 =
{

(d1, d2) ∈ C0
(
[0, 1],R2

)
: dk(0) = dk(1) = 0, k = 1, 2

}
,

for (c1, c2) ∈ Xδ0 , the tangent space T(c1,c2)Xδ0 of Xδ0 at (c1, c2) is

T(c1,c2)Xδ0 =
{

(d1, d2) ∈ C0
(
[−δ0, 1 + δ0],R2

)
: dk(x) = 0 for x 6∈ (0, 1), k = 1, 2

}
,

and, for (G1, G2) ∈ Yρ, the tangent space T(G1,G2)Yρ of Yρ at (G1, G2) is

T(G1,G2)Yρ =
{
g = (g1, g2) ∈ C0

(
[0, 1],R2

)}
= C0

(
[0, 1],R2

)
.

3.2.1 Properties of Ψε

We will give a detailed examination of the properties of Ψ = Ψ0 and these of Ψε can
be treated as perturbations for small ε. For the properties of Ψ given below, we will
borrow some results from [45].

For any given (G1, G2) ∈ Yρ, if
(
φ(x; ε), c1(x; ε), c2(x; ε), J1(ε), J2(ε), τ(x)

)
is the

solution of auxi-BVP (3.5) and (3.6), then

Ψε(G1, G2)(x) =
(
c1(x; ε), c2(x; ε)

)
=
(
c10(x), c20(x)

)
+O(ε),

and hence, Ψ(G1, G2)(x) =
(
c10(x), c20(x)

)
. Recall H(x) =

∫ x
0 h
−1(s)ds from (3.8).

The following result is established in [45].

Proposition 3.3. For ε > 0 small and for any (G1, G2) ∈ Yρ, the corresponding auxi-
BVP (3.5) and (3.6) has a unique solution

(
φ(x; ε), c1(x; ε), c2(x; ε), J1(ε), J2(ε)

)
.

Furthermore, for the zeroth order (in ε) terms ck0(x) = ck(x; 0), k = 1, 2, one has

c10(x) =L1(0) +
z2

z1 − z2

∫ x

0

G1(s) +G2(s)

h(s)
ds

− H(x)

H(1)

(
L1(0)−R1(1) +

z2
z1 − z2

∫ 1

0

G1(s) +G2(s)

h(s)
ds

)
,

c20(x) =L2(0)− z1
z1 − z2

∫ x

0

G1(s) +G2(s)

h(s)
ds

− H(x)

H(1)

(
L2(0)−R2(1)− z1

z1 − z2

∫ 1

0

G1(s) +G2(s)

h(s)
ds

)
.

(3.12)

The above result allows us to obtain the following estimates.

Corollary 3.4. For ε > 0 small and for any (G1, G2) ∈ Yρ, let the unique solution of
the corresponding auxi-BVP (3.5) and (3.6) be

(
φ(x; ε), c1(x; ε), c2(x; ε), J1(ε), J2(ε)

)
.

Recall that (c10(x), c20(x)) = Ψ(G1, G2)(x) ∈ X0. Then, for k = 1, 2,

‖ck0‖ ≤ max
{
Lk(0), Rk(1)

}
+H(1)ρ. (3.13)
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The mapping Ψ = (Ψ1,Ψ2) is Fréchet differentiable and its Fréchet derivative

DΨ(G1, G2) : T(G1,G2)Yρ → T(c1,c2)X0

at (G1, G2) ∈ Yρ is independent of (G1, G2) and is given by, for g = (g1, g2),

(DΨ1[g])(x) =
z2

z1 − z2

(∫ x

0

g1(s) + g2(s)

h(s)
ds− H(x)

H(1)

∫ 1

0

g1(s) + g2(s)

h(s)
ds

)
,

(DΨ2[g])(x) =
z1

z2 − z1

(∫ x

0

g1(s) + g2(s)

h(s)
ds+

H(x)

H(1)

∫ 1

0

g1(s) + g2(s)

h(s)
ds

)
,

(3.14)

and has the estimate

‖DΨ‖ ≤ H(1). (3.15)

Proof. The estimate (3.13) follows directly from (3.12). Furthermore, calculating
directly from (3.12), we obtain

Ψ1(G1 + g1, G2 + g2)(x)−Ψ1(G1, G2)(x)

=
z2

z1 − z2

∫ x

0

g1(s) + g2(s)

h(s)
ds− z2

z1 − z2
H(x)

H(1)

∫ 1

0

g1(s) + g2(s)

h(s)
ds,

from which one has the first formula in (3.14). The second formula in (3.14) can be
obtained similarly. Hence,

‖DΨ1‖ ≤
|z2|

|z1 − z2|
H(1) and ‖DΨ2‖ ≤

|z1|
|z1 − z2|

H(1),

from which (3.15) follows since z1 > 0 > z2.

3.2.2 Properties of E

The properties of E can be easily obtained.

Lemma 3.5. The mapping E is Fréchet differentiable and its Fréchet derivative
DE(c1, c2) : T(c1,c2)X0 → T(ĉ1,ĉ2)Xδ0 at (c1, c2) is independent of (c1, c2) and is given
by, for x ∈ [−δ0, 1 + δ0],

DE [d1, d2](x) =
(
d̂1(x), d̂2(x)

)
,

where d̂k(x) = dk(x) for x ∈ [0, 1] and d̂k(x) = 0 for x ∈ [−δ0, 0] ∪ [1, 1 + δ0]; in
particular, ‖DE‖ = 1.

Proof. The statement follows from the definition of E .

3.2.3 Properties of G

The formula (3.2) allows us to obtain the following properties of G.
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Lemma 3.6. Let (c1, c2) ∈ Xδ0 and (Ĝ1, Ĝ2) = G(c1, c2) ∈ Yρ. Then,

‖Ĝk‖ ≤ ν‖h‖‖fk‖‖ck‖. (3.16)

The mapping G is Fréchet differentiable and its Fréchet derivative

DG = DG(c1, c2) : T(c1,c2)Xδ0 → T(G1,G2)Yρ

at (c1, c2) ∈ Xδ0 is given by, for k = 1, 2,

DGk[θ1, θ2](x) = νh(x)fk · θk(x)

+ νh(x)ck(x)∂1fk · θ1(x− λ1k) + νh(x)ck(x)∂2fk · θ1(x+ λ1k)

+ νh(x)ck(x)∂3fk · θ2(x− λ2k) + νh(x)ck(x)∂4fk · θ2(x+ λ2k),

(3.17)

where fk and its partial derivatives ∂jfk are evaluated at(
c1(x− λ1k), c1(x+ λ1k), c2(x− λ2k), c2(x+ λ2k)

)
.

Moreover,

‖DG‖ ≤ ν‖h‖
((
‖c1‖+ ‖c2‖

)
‖Df‖+ ‖f‖

)
. (3.18)

Proof. The estimate (3.16) follows from (3.3) directly.
To compute the Fréchet derivative of Gk from (3.3), we will use the short notation(

c1(x± λ11), c2(x± λ21)
)

for the argument (
c1(x− λ11), c1(x+ λ11), c2(x− λ21), c2(x+ λ21)

)
of f1 and f2.

Now, let (θ1, θ2) ∈ T(c1,c2)Xδ0 . It follows from (3.3) that

G1(c1 + θ1, c2 + θ2)(x)− G1(c1, c2)(x)

= νh(x)(c1(x) + θ1(x))f1
(
(c1 + θ1)(x± λ11), (c2 + θ2)(x± λ21)

)
− νh(x)c1(x)f1

(
c1(x± λ11), c2(x± λ21)

)
= νh(x)c1(x)f1

(
(c1 + θ1)(x± λ11), (c2 + θ2)(x± λ21)

)
− νh(x)c1(x)f1

(
c1(x± λ11), c2(x± λ21)

)
+ νh(x)θ1(x)f1

(
(c1 + θ1)(x± λ11), (c2 + θ2)(x± λ21)

)
.

(3.19)

The difference of the first two terms in the last expression of (3.19) can be esti-
mated as

νh(x)c1(x)
(
f1
(
(c1 + θ1)(x± λ11), (c2 + θ2)(x± λ21)

)
− f1

(
c1(x± λ11), c2(x± λ21)

))
= νh(x)c1(x)∂1f1 · θ1(x− λ11) + νh(x)c1(x)∂2f1 · θ1(x+ λ11)

+ νh(x)c1(x)∂3f1 · θ2(x− λ21) + νh(x)c1(x)∂4f1 · θ2(x+ λ21) + o(‖θ‖),
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where f1 and its partial derivatives ∂jf1 are evaluated at(
c1(x± λ11), c2(x± λ21)

)
.

The last term in the last expression of (3.19) can be estimated as

νh(x)θ1(x)f1
(
(c1 + θ1)(x± λ11), (c2 + θ2)(x± λ21)

)
=νh(x)θ1(x)f1

(
c1(x± λ11), c2(x± λ21)

)
+ o(‖θ‖).

Therefore,

G1(c1 + θ1, c2 + θ2)(x)− G1(c1, c2)(x)

= νh(x)c1(x)∂1f1 · θ1(x− λ11) + νh(x)c1(x)∂2f1 · θ1(x+ λ11)

+ νh(x)c1(x)∂3f1 · θ2(x− λ21) + νh(x)c1(x)∂4f1 · θ2(x+ λ21)

+ νh(x)θ1(x)f1
(
c1(x± λ11), c2(x± λ21)

)
+ o(‖θ‖),

which implies the formula for DG1 in (3.17).
Similarly, one obtains the formula for DG2 in (3.17). Therefore, G is Fréchet

differentiable with its Fréchet derivative given in (3.17). The estimate (3.18) then
follows directly from (3.17).

4 Proof of Theorem 3.1

First of all, we will show that, under the assumptions on ν and ρ in (3.9) and (3.10),
(G ◦ E ◦Ψε) maps Yρ → Yρ. Indeed, for (G1, G2) ∈ Yρ, let (c1, c2) = Ψ(G1, G2),
(ĉ1, ĉ2) = E(c1, c2), and (Ĝ1, Ĝ2) = G(ĉ1, ĉ2). Then, it follows from (3.13) in Corollary
3.4 that,

‖ck‖ ≤ max{Lk(0), Rk(1)}+H(1)ρ,

and hence,

‖(ĉ1, ĉ2)‖ ≤M + 2H(1)ρ, (4.1)

where M is defined in (3.8).

The estimate (3.16) in Lemma 3.6 gives

‖Ĝ‖ ≤ν‖h‖‖f‖‖ĉ‖ ≤ ν‖h‖‖f‖ (M + 2H(1)ρ) .

It can be checked easily that ν‖h‖‖f‖ (M + 2H(1)ρ) ≤ ρ if and only if

ν <
1

2‖h‖‖f‖H(1)
and ρ ≥ ν‖h‖‖f‖M

1− 2ν‖h‖‖f‖H(1)
.

The above inequalities about ν and ρ are implied by conditions (3.9) and (3.10) in
Theorem 3.1. Therefore, under the conditions (3.9) and (3.10), G◦E◦Ψ maps Yρ → Yρ,
and hence, for ε > 0 small enough, G ◦ E ◦Ψε maps Yρ → Yρ too.
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It remains to show that G ◦ E ◦ Ψε is a contraction. Applying (3.15), (3.18) and
‖DE‖ = 1, we obtain

‖D(G ◦ E ◦Ψ)‖ ≤‖DG‖‖DE‖‖DΨ‖

≤ν‖h‖
((
‖ĉ1‖+ ‖ĉ2‖

)
‖Df‖+ ‖f‖

)
H(1)

≤ν‖h‖
((
M + 2H(1)ρ

)
‖Df‖+ ‖f‖

)
H(1).

It follows from conditions (3.9) and (3.10) in Theorem 3.1 that

ν <
1

‖h‖‖f‖H(1) +M‖h‖‖Df‖H(1)
,

ρ <
1

2ν‖h‖‖Df‖H2(1)
− ‖f‖

2‖Df‖H(1)
− M

2H(1)
,

which then imply that ‖D(G◦E ◦Ψ)‖ < 1. Hence, for ε > 0 small, ‖D(G◦E ◦Ψε)‖ < 1.
An application of the Contraction Mapping Theorem then completes the proof of

Theorem 3.1.

5 Discussion

In this paper, we have examined the issue of well-posedness of BVP of PNP models
with nonlocal excess potentials for ionic flow through ion channels. A set of natural
boundary conditions is proposed under which we obtained the well-posedness of BVP.
We will end the paper with several comments.

5.1 Choices of δ∗ for boundary conditions (2.7)

We first discuss the choice of δ∗ in (2.6) for the length of intervals over which the
boundary concentrations are imposed. It turns out that the choice of δ∗ is optimal.

For this purpose, we set

rM := max{rjk = rj + rk : 1 ≤ j, k ≤ n}.

(a) As shown in Theorem 3.1, the boundary condition (2.7) with δ∗ = rM de-
termines Φ(X), Ck(X)’s and Jk’s for X ∈ [a0, a1] from the PNP system (2.3) with
nonlocal excess potentials µexk in (2.5). In particular, this implies that one needs
δ∗ ≥ rM in order to determine a unique solution of the BVP.

(b) Suppose now one chooses δ∗ > rM so that a0 − δ∗ + rM < a0. From (a), the
conditions on Ck(X) for X ∈ [a0 − rM , a0] ∪ [a1, a1 + rM ] together with Φ(a0) = V
and Φ(a1) = 0 already determine the solution (Φ(X; rM ), Ck(X; rM ),Jk(rM )) for
X ∈ [a0, a1]. (We include the variable rM to indicate the quantities are determined
by the values of Ck(X) for X ∈ [a0− rM , a0]∪ [a1, a1 + rM ].) One can then determine
Φ(X) for X ∈ [a0 − δ∗, a0] from the Poisson equation in (2.3) from (Φ, dΦ/dX)(a0)
and Ck(X) for X ∈ [a0− δ∗, a0]. As a result, one can determine the excess potentials
µexk (X)’s for X ∈ [a0 − δ∗ + rM , a0], which is a nonempty subset of [a0 − δ∗, a0] since
a0−δ∗+rM < a0; for example, to determine µexk (X0)’s for X0 = a0−δ∗+rM , one needs
Cj(X)’s for X ∈ [X0−rM , X0+rM ] = [a0−δ∗, a0−δ∗+2rM ]. It then follows from the
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Nernst-Planck equations in (2.3) that the fluxes Jk(δ∗)’s can be determined over the
subinterval [a0 − δ∗ + rM , a0] that depend on the specific values of Ck(X) = Lk(X)
for X ∈ [a0 − δ∗, a0 − δ∗ + rM ] ⊂ [a0 − δ∗, a0]; in particular, Jk(δ∗) 6= Jk(rM )
in general. This inconsistence shows that one cannot choose δ∗ > rM , and hence,
δ∗ = max{rjk = rj + rk : 1 ≤ j, k ≤ n} as in (2.6) is optimal.

5.2 Implications to experimental designs

In this paper, we attempt to investigate PNP models with non-local excess poten-
tials. As a starting point, we take a simple setting to bring out the relevant boundary
quantities for the ionic flows, whether maintained by the experimental designs or mea-
sured from actual experiments. We show that, when the non-localness of the excess
potential is relevant, the I-V relation does depend on the boundary concentrations
in an neighborhood of the electrode points, more than those just at the electrode
points. This would imply that, if one thought only the boundary concentrations
at the electrode points are relevant, then one would have different I-V relations for
fixed boundary concentrations at the electrode points but different boundary con-
centrations nearby either maintained by the experimental design or measured from
experiments. It is not clear wether the differences could be significant. On the other
hand, if one views the boundary conditions are imposed over the whole baths, then
the boundary value problem would be over determined from the analysis of PNP type
models.

We stress that, for practical purposes and from mathematical analysis viewpoints,
there are many directions to be improved from this study: the permanent charge could
be included in quasi-one-dimensional PNP type models, three-dimensional PNP type
models could be better for more features of non-localness and more actuate interaction
between the permanent charges and channel geometry, and the free ions inside the
channel, the primitive PNP type models could be coupled with the Navier-Stokes
equation for the flow of medium (water), etc.
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