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Abstract

In this work we consider the linear stability of a sub-to-super invis-
cid transonic stationary wave of a one-dimensional model of isentropic
compressible flows through a nozzle of varying area. This sub-to-super
inviscid transonic stationary wave is newly founded by the authors us-
ing the geometric singular perturbation theory. The main result of this
work is to show that the sub-to-super inviscid transonic stationary wave
is physically relevant in the sense that it is L∞ linearly stable on any
bounded space interval as long as its velocity is greater than 1/

√
2 of the

sound speed.
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1 Introduction

The following system{
(aρ)t + (aρu)x = 0,

(aρu)t + (aρu2)x + a(P (ρ))x = 0
(1.1)

is a well-known one-dimensional model of isentropic compressible flow through
a narrow nozzle with variable cross-section area (see [2,3,5,14–18,21–24] etc.).
Here ρ, u, P and a = a(x) are the density, velocity, pressure of the gas and the
area of the cross-section at x of the rotationally symmetric tube of the nozzle.
The pressure P is assumed to be a given function of the density ρ.

Including the equation for the energy E, system (1.1) becomes

∂w

∂t
+
∂f(w)

∂x
= g(x,w), (1.2)

where w = (ρ, ρu, ρE), f(w) = (ρu, ρu2 + P, ρuE + Pu) and

g(x,w) = −ax(x)

a(x)
(ρu, ρu2, ρuE + Pu).

Note that the first two equations are decoupled from the third equation.

In [16], T.P. Liu constructed global solutions of the initial value problem
for general quasilinear strictly hyperbolic systems of form (1.2) and studied
their asymptotic behaviors. Roughly speaking, it was shown that, for an initial
data w0(x) and for w uniformly close to w0, if all eigenvalues λj(w) of fw are
nonzero and the L1-norm of g and gw are small, then a global solution exists and
tends pointwise to a steady-state solution of (1.2). In particular, the stability
of supersonic and subsonic waves is established.

In [17], T.P. Liu then focused on transonic waves of gas flow in a nozzle
of varying area via the model (1.1) or (1.2) with the specific f and g. He
constructed solutions, under various asymptotic conditions on w, of the steady-
state system

∂f(w)

∂x
= g(x,w). (1.3)

In particular, solutions demonstrated significant qualitative differences between
a contracting nozzle (for example, ax(x) < 0 for 0 < x < 1 and ax(x) ≡ 0 for
x /∈ (0, 1)) and an expanding nozzle (for example, ax(x) > 0 for 0 < x < 1 and
ax(x) ≡ 0 for x /∈ (0, 1)). Asymptotic states along a nozzle that contracts and
then expands (ax(x) < 0 for −1 < x < 0, ax(x) > 0 for 0 < x < 1 and ax(x) ≡ 0
for x /∈ [−1, 1]) are also examined to exhibit a number of interesting phenomena
including the choking phenomenon. In [18], stability of transonic flows was
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examined and it was shown that, flows along expanding nozzles are stable and
those with standing shock waves along a contracting nozzle are nonlinearly
unstable.

Steady nozzle flows were also investigated numerically by Chakravarthy &
Osher [1], Embid et al [5], Shubin et al [21], Smith [24], etc. For standing waves
of (1.2), the conservation of energy is a consequence of the first two conservation
laws known as Bernoulli law (see [5, 10], etc.).

Recently, using the geometric singular perturbation approach, we examined
stationary waves of system (1.1) and their viscous profiles via the viscous reg-
ularization. More precisely, in [11], we consider the system{

(aρ)t + (aρu)x = 0,

(aρu)t + (aρu2)x + a(P (ρ))x = ε(aux)x,
(1.4)

where ε > 0 is the viscosity coefficient. Suppose the following assumptions hold:

(A-1) P (0) = 0, P ′(ρ) > 0 and P ′′(ρ) ≥ 0 for ρ > 0 (1.5)

and

(A-2) xax(x) > 0 for x 6= 0, axx(0) > 0, a(x)→ a± as x→ ±∞; (1.6)

that is, the nozzle is first contracting then expanding. Note that, for polytropic
gases, the pressure is P (ρ) = θργ for some θ > 0 and 1 ≤ γ ≤ 5/3 and satisfies
condition in (A-1). For such a contracting-expanding nozzle, a detailed and
rather complete classification of stationary waves that admit viscous profiles was
provided. Quite interestingly, in [11], a smooth sub-to-super inviscid transonic
stationary wave was constructed for the inviscid system (1.1). More precisely,
we proved that, for any m > 0, there is a unique quadruple (ρ−, u−, ρ+, u+) with
m = a±ρ±u± so that u− <

√
P ′(ρ−) and u+ >

√
P ′(ρ+), and a unique smooth

stationary wave (ρ(x; 0), u(x; 0)) of (1.1) such that (ρ(x), u(x)) → (ρ±, u±) as
x → ±∞ and, only at x = 0, u(x; 0) =

√
P ′(ρ(x; 0)). Thus, this smooth

stationary wave (ρ(x; 0), u(x; 0)) is subsonic for x < 0, sonic at x = 0 and
supersonic for x > 0. We also showed that the sub-to-super inviscid transonic
stationary wave admits viscous profiles (ρ(x; ε), u(x; ε)) for system (1.4), which
is called a sub-to-super viscous transonic stationary wave. Smooth super-to-sub
transonic waves, super-to-sub transonic with standing shocks as well as steady-
states with a portion of a sub-to-super transonic waves were also constructed.

Our main concern in this paper is the linear stability of the sub-to-super
inviscid transonic stationary waves (ρ(x; 0), u(x; 0)) constructed in [11]. First,
we consider the L2- and H1- energy for the linearized problem of (1.1) about
(ρ(x; 0), u(x; 0)). Suppose u− >

√
P ′(ρ−)/2, then we are able to simultaneously

symmetrize the the convection matrix (see Proposition 3.1) and establish the
non-negative definiteness of the reaction matrix (see Lemmas 3.3 and 3.4) in L2-
and H1 energies. However, due to the fact ρx(±∞; 0) = 0, the energy method
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only implies that the L2-energy (or some linear combination of L2- and H1-
energies) is decreasing in time variable. This fact does not imply the linear sta-
bility. To overcome this difficult, we further provide more delicate estimates and
show that the sub-to-super inviscid transonic stationary wave, on any bounded
space interval, is linearly L∞ stable. Note that our result can be generalized
to sub-to-super viscous transonic stationary waves if (ρ(x; ε), u(x; ε)) converges
to (ρ(x; 0), u(x; 0)) smoothly (see Remark 3.8). Moreover, we emphasis that
our result is new and we provide a non-standard technique to study the related
stability problems.

The rest of this paper is organized as follows. In Section 2, we briefly re-
call the construction of the sub-to-super inviscid transonic stationary wave and
its viscous profiles by using the geometric singular perturbation approach. In
Section 3, our main result, the linearly L∞ stability of the sub-to-super inviscid
transonic stationary wave for the inviscid system (1.1), will be established.

2 Sub-to-super transonic stationary waves

In [11], we showed the existence of the smooth sub-to-super inviscid transonic
stationary wave for the inviscid system (1.1) and its viscous profiles as stationary
waves of (1.4). For the sake of completeness, in this section we present the
general geometric singular perturbation setup, sketch the construction and refer
to [11] for a detailed proof and other related results. Throughout this paper,
we always assume the conditions (A-1) and (A-2) hold.

The steady-state problem of system (1.4) is{
(aρu)x = 0,

(aρu2)x + a(P (ρ))x = ε(aux)x,
(2.7)

Definition 2.1. Let (ρ(x), u(x)) be a bounded smooth solution of (2.7) with
ε = 0. We say (ρ(x), u(x)) has a viscous profile if, for ε > 0 small, system
(2.7) has a solution (ρ(x; ε), u(x; ε)) such that (ρ(x; ε), u(x; ε)) → (ρ(x), u(x))
as ε→ 0 uniformly for x ∈ R.

Remark 2.2. In [11], we showed that, for a bounded smooth solution (ρ(x), u(x)),
necessarily, (ρ(x; ε), u(x; ε))→ (ρ±(ε), u±(ε)) as x→ ±∞ for some (ρ±(ε), u±(ε))
and ε > 0. In Definition 2.1, we allow (ρ±(ε), u±(ε)) 6= (ρ±, u±) but require
(ρ±(ε), u±(ε))→ (ρ±, u±) as ε→ 0.

Let (ρ(x; ε), u(x; ε)) be a solution of (2.7) and assume (ρ(x; ε), u(x; ε)) →
(ρ±(ε), u±(ε)) as x → ±∞ and (ρ±(ε), u±(ε)) → (ρ±, u±) as ε → 0. The first
equation in (2.7) gives

a(x)ρ(x; ε)u(x; ε) = a−ρ−(ε)u−(ε) = a+ρ+(ε)u+(ε).
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Let mε = a±ρ±(ε)u±(ε) and m0 = a±ρ±u±. For definiteness, we will consider
the case mε ≥ 0. System (2.7) reduces to

(m2
εa
−1ρ−1)x + a(P (ρ))x = ε(a(mεa

−1ρ−1)x)x. (2.8)

If mε = 0, system (2.8) has a trivial solution with ρ = const and u = 0.
Therefore, we will only consider the case m0 > 0 and mε > 0 in the sequel.

2.1 A dynamical system formulation

The problem (2.8) can be examined using the geometric singular perturbation
approach of dynamical systems. In order to do so, we will rewrite the equation
(2.8) as an autonomous system of first order equations. Thus, we introduce the
variables:

w := εa(mεa
−1ρ−1)x −m2

εa
−1ρ−1 − aP (ρ), ηx = 1− η2 with η(0) = 0. (2.9)

It is obvious that η(x) is an increasing function for −∞ < x <∞ and η(±∞) =
±1. We denote the inverse by x = x(η) with −1 ≤ η ≤ 1 and treat a(x) as a
function of η via x = x(η). System (2.8) is recast as ερ̇ = −εa−1axρ−m−1

ε ρ2
(
w +m2

εa
−1ρ−1 + aP (ρ)

)
,

ẇ = −axP (ρ),
η̇ = 1− η2,

(2.10)

where “·” means d
dx

. A naive way to make the system autonomous is to augment
the equation ẋ = 1 instead of η̇ = 1− η2. In doing so, one has to consider the
whole phase space R3. With the introduction of the variable η, since η → ±1 as
x→ ±∞, we can restrict system (2.10) on the compact portion {−1 ≤ η ≤ 1} of
η-variable so that the invariant manifold theory ( [6,8]) can be applied directly
in our construction of stationary wave solutions.

In terms of the fast scale ξ = x/ε, system (2.10) becomes ρ′ = −εa−1axρ−m−1
ε ρ2

(
w +m2

εa
−1ρ−1 + aP (ρ)

)
,

w′ = −εaxP (ρ),
η′ = ε(1− η2),

(2.11)

where “ ′ ” means d
dξ

.

The equilibria of system (2.11) are B±(ε) = (ρ±(ε), w±(ε),±1) where

w±(ε) = −m2
εa
−1
± ρ

−1
± (ε)− a±P (ρ±(ε)).

Thus the existence of solutions of (2.8) is equivalent to finding an orbit (ρ, w, η)
of (2.10) or equivalently (2.11) in R3 that connects B−(ε) to B+(ε).

The idea of the geometric singular perturbation theory ( [7, 12]) is to first
understand the limiting systems of (2.10) and (2.11) at ε = 0 and then piece
the information together to make conclusions for ε > 0 small.
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2.2 Slow manifold, limiting slow and fast dynamics.

Now, let’s consider the limiting slow and fast systems of (2.10) and (2.11).
Setting ε = 0 in (2.10) and (2.11), we have the limiting slow and fast systems

0 = m−1
0 ρ2(w +m2

0a
−1ρ−1 + aP (ρ)),

ẇ = −axP (ρ),
η̇ = 1− η2,

(2.12)

and  ρ′ = −m−1
0 ρ2

(
w +m2

0a
−1ρ−1 + aP (ρ)

)
,

w′ = 0,
η′ = 0.

(2.13)

2.2.1 Slow manifold, normal hyperbolicity and turning points

The slow manifold Z0 is given by the algebraic equation in (2.12)

Z0 =
{

(ρ, w, η) : w = −m2
0a
−1ρ−1 − aP (ρ)

}
, (2.14)

and it is the set of equilibria of system (2.13). The linearization of system (2.13)
along the slow manifold Z0 has three eigenvalues

0, 0 and λ = m−1
0 aρ2

(
m2

0a
−2ρ−2 − P ′(ρ)

)
.

The two zero eigenvalues correspond to the tangent space of Z0 and the eigen-
value λ corresponds to the transversal direction to Z0.

According to the sign of λ, Z0 is split into Z0 = Zs0 ∪ T ∪ Zu0 where

Zu0 ={(ρ, w, η) ∈ Z0 : m0a
−1ρ−1 >

√
P ′(ρ), ρ > 0, η ∈ [−1, 1] },

Zs0 ={(ρ, w, η) ∈ Z0 : m0a
−1ρ−1 <

√
P ′(ρ), ρ > 0, η ∈ [−1, 1] },

T ={(ρ, w, η) ∈ Z0 : m0a
−1ρ−1 =

√
P ′(ρ), ρ > 0, η ∈ [−1, 1] }.

(2.15)

The portion Zs0 is (normally) stable, Zu0 is (normally) repelling and T is the set
of turning points.

Remark 2.3. Recall that u = m0a
−1ρ−1. Thus, the set Zu0 consists of super-

sonic states (u >
√
P ′), T sonic states (u =

√
P ′), and Zs0 subsonic states

(u <
√
P ′).

It is shown ( [11]) that Zs0 , Zu0 and T can be represented as the graphs of
functions ρ = ρ1(w, η), ρ = ρ2(w, η) and (ρ, w) = (ρ0(w0(η)), w0(η)), respec-
tively (see Figure 1).
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10−1
η

ρ

w

ρ = ρ0(w0(η))

w = w0(η)

T

Zs
0 : ρ = ρ2(w, η)

Zu
0 : ρ = ρ1(w, η)

2

Figure 1: The slow manifold Z0 and its partition Z0 = Zs0 ∪ T ∪ Zu0 .

2.2.2 Limiting slow dynamics on Z0

To study the dynamics on the slow manifold Z0, we use the representation
(2.14) to identify Z0 with the ρη-plane. Then, on the ρη-plane with ρ-axis as
the vertical one, T separates the band {(ρ, η) : ρ > 0, η ∈ [−1, 1]} into two
parts: Zs0 lies above T and Zu0 below T (see Figure 2).

To represent the limiting slow flow (2.12) on Z0 in terms of the variable
(ρ, η), we differentiate

w = −m2
0a
−1ρ−1 − aP (ρ)

with respect to x and use system (2.12) to get(
P ′(ρ)−m2

0a
−2ρ−2

)
ρ̇ = m2

0axa
−3ρ−1.

Note that P ′(ρ) − m2
0a
−2ρ−2 = 0 on T . Therefore, in the variable (ρ, η), the

limiting slow flow on Zs0 ∪ Zu0 is

ρ̇ =
m2

0axa
−3ρ−1

P ′(ρ)−m2
0a
−2ρ−2

, η̇ = 1− η2. (2.16)

We remark that both Zs0 and Zu0 are not invariant under system (2.16) and
system (2.16) is not defined along T . But, at the turning point (ρ0, 0) where
m2

0a
−2(0)ρ−2

0 = P ′(ρ0), the numerator m2
0axa

−3ρ−1 vanishes too since ax(0) = 0.
In fact, system (2.16) can be continued to (ρ0, 0). The turning point (ρ0, 0) is
called a canard point and all other turning points are fold points ( [4, 13]). A
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crucial effect of the turning point (ρ0, 0) on the dynamics for ε > 0 will be given
in Theorem 2.7.

The dynamics of (2.16) is completely determined by

Lemma 2.4. System (2.16) has an integral

I(ρ, η) =

∫ ρ

ρ0

P ′(s)

s
ds+

m2
0

2a2(x(η))ρ2
. (2.17)

The following statements can also be easily checked for system (2.16).

Lemma 2.5. On Zs0 ∩ {−1 ≤ η < 0} and Zu0 ∩ {0 < η ≤ 1}, the ρ-component
of a solution is decreasing; On Zs0 ∩ {0 < η ≤ 1} and Zu0 ∩ {−1 ≤ η < 0}, the
ρ-component is increasing (see Figure 2).

Proof. On Zs0 ∩ {−1 ≤ η < 0}, due to the assumption (A-2) in (1.6), P ′(ρ) −
m2a−2ρ−2 > 0 and ax < 0. In view of the ρ-component of system (2.16), we
have that the ρ-component of a solution is decreasing. All other statements can
be verified in the same way.PSfrag

T

Bu
+

Bs
+

Bs
−

Bu
−

η

ρ

10−1

ρ0

ρ
L ρ

R

Zs
0

Zu
0

Λℓs

Λℓu

Λrs

Λru

5

Figure 2: Standing waves, the smooth sub-to-super transonic wave Λ`s∪Λru and
the smooth super-to-sub transonic wave Λ`u ∪ Λrs.

2.2.3 Limiting fast dynamics

The limiting fast dynamics (2.13) is trivial. The variable (w, η) is fixed, Z0 is
the set of equilibria, and ρ will approach Zs0 in forward direction and approach
Zu0 in backward direction. The orbits correspond to shock waves.
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2.3 A sub-to-super inviscid transonic orbit and its vis-
cous profile

We now ready to construct sub-to-super inviscid transonic orbits and their vis-
cous profiles. Define ρL and ηR bym0 = a−ρL

√
P ′(ρL) andm0 = a+ρR

√
P ′(ρR);

that is, (ρL,−1) = T ∩ {η = −1} and (ρR, 1) = T ∩ {η = 1} (see Figure 2).

Lemma 2.6. There are exactly four points Bs
± = (ρs±,±1) ∈ Zs0 and Bu

± =
(ρu±,±1) ∈ Zu0 with ρu− < ρL < ρs− and ρu+ < ρR < ρs+ such that

I(Bs
±) = I(Bu

±) = I(ρ0, 0), (2.18)

where I is defined in (2.17), and each point is connected with (ρ0, 0) by the
corresponding level curve (see Figure 2).

We denote the singular orbits in Zu0 from Bu
− to (ρ0, 0) by Λ`u, from (ρ0, 0)

to Bu
+ by Λru, and the singular orbits in Zs0 from Bs

− to (ρ0, 0) by Λ`s, from
(ρ0, 0) to Bs

+ by Λrs. The singular orbit O0 = Λ`s ∪ Λru is the sub-to-super
inviscid transonic stationary wave of the inviscid gas flow for the given m0.
The following result in [11] provides the existence of the viscous profile for the
sub-to-super transonic stationary wave O0.

For ε > 0, we now go back to the phase space R3. Due to the normal
hyperbolicity of Zs0 and Zu0 from (2.15), the invariant manifold theory ( [6, 8])
implies the existence of Zsε and Zuε for ε > 0 small. But Zsε and Zuε will break
in the vicinity of the turning point set T ( [19,20]). If we choose a cross-section
Σ = {(ρ, w, η) : ρ = σ(w, η)} near T , then, for ε > 0, T s,uε = Zs,uε ∩Σ are curves
on Σ. Let

T s,uε = {(ρ, w, η) : ρ = σ(w, η), w = ws,uε (η)}.

Theorem 2.7. There exists ηε, O(ε)-close to 0, so that wsε(ηε) = wuε (ηε) = wε,

wsε(η) > wuε (η) for η ∈ (−1, ηε) and wsε(η) < wuε (η) for η ∈ (ηε, 1).

In particular, for ε > 0 small, there is a unique orbit Oε of system (2.10) or
equivalently (2.11) such that Oε → O0 as ε→ 0. See Figure 3.

Proof. See [11,19].

In terms of the original variables, we have, for any fixed m0 > 0, there is a
unique smooth sub-to-super transonic stationary wave (ρ(x; 0), u(x; 0)) that

corresponds to the orbit O0 above so that

(i) ρx(x; 0) < 0, (ρ(x; 0), u(x; 0))→ (ρ±, u±) as x→ ±∞;

(ii) m0 = a±ρ±u±, u(x; 0) <
√
P ′(ρ(x; 0)) for x < 0, u(x; 0) =

√
P ′(ρ(x; 0))

at x = 0, and u(x; 0) >
√
P ′(ρ(x; 0)) for x > 0.
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Oε

O0

T s
ε

T s
ε

ηε
T u
ε

T u
ε

1

0−1 η

ρ

w

ρ = ρ0(w0(η))

w = w0(η)

T

Zs
0 : ρ = ρ2(w, η)

Zu
0 : ρ = ρ1(w, η)

2

Figure 3: Break of Z0 near T to Zsε and Zuε for ε > 0.

Furthermore, (ρ(x; 0), u(x; 0)) has a unique viscous profile in the sense that,
given mε → m0 as ε → 0, for ε > 0 small, system (2.8) has a unique solu-
tion (ρ(x; ε), u(x; ε)) that corresponds to the orbit Oε in Theorem 2.7 so that
mε = a±ρ±(ε)u±(ε) and (ρ(x; ε), u(x; ε))→ (ρ(x; 0), u(x; 0)) as ε→ 0 uniformly
in x.

We remark that other types of stationary waves, for examples, smooth super-
to-sub transonic waves (Λ`u∪Λrs), stationary waves with standing shocks and/or
with some portions of the sub-to-super transonic waves were also constructed
in [11]. We refer the interested reader to the paper for a complete discussion.

Our stability result in the next section applies only for the sub-to-super invis-
cid transonic stationary wave satisfying an extra condition: u− >

√
P ′(ρ−)/2.

Regarding this condition, we have the following result.

Lemma 2.8. Fix a0 = a(0). For any m0 > 0, there is a∗ = a∗(m0) > a0

such that if a0 < a− < a∗, then the sub-to-super inviscid transonic stationary
wave (ρ(x; 0), u(x; 0)) of the inviscid system (1.1) with a−ρ−u− = m0 satisfies
u− >

√
P ′(ρ−)/2.

Proof. For fixed m0 > 0, ρ0 is uniquely determined by m2
0 = a2

0ρ
2
0P
′(ρ0). For

any a− > a0, ρ− = ρ−(a−) > ρ0 is thus defined uniquely by I(ρ−,−1) = I(ρ0, 0)
from Lemma 2.4; that is,∫ ρ−

ρ0

P ′(s)

s
ds+

1

2
m2

0a
−2
− ρ

−2
− =

1

2
m2

0a
−2
0 ρ−2

0 .
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Take the derivative with respect to a− to get

dρ−
da−

=
m0a

−3
− ρ

−1
−

P ′(ρ−)−m2
0a
−2
− ρ

−2
−

> 0.

Note that ρ− → ρ0 as a− → a0 and hence dρ−
da−
→ +∞ as a− → a0.

Now set r(a−) = 2m2
0 − a2

−ρ
2
−P
′(ρ−). Then r(a−) → m2

0 > 0 as a− → a0

and r(a−)→ −∞ as a− → +∞. Since

∂r

∂a−
= −2a−ρ

2
−P
′(ρ−)−

(
2a2
−ρ−P

′(ρ−) + a2
−ρ

2
−P
′′(ρ−)

) dρ−
da−

< 0,

we conclude that there exists a unique a∗ = a∗(m0) > a0 such that r(a∗) = 0
and r(a−) > 0 provided a0 < a− < a∗. Note that r(a−) > 0 is equivalent to
u− >

√
P ′(ρ−)/2. The proof is complete.

3 Linear stability of the sub-to-super inviscid

transonic stationary wave

In this section, we first setup the linearized problem of (1.4) with respect to
the smooth stationary waves. Using energy method, if u− >

√
P ′(ρ−)/2, we

provide some basic properties and show that the L2-energy for the inviscid
problem with respect to the sub-to-super inviscid transonic stationary wave is
decreasing in the time variable. Then we establish our main result that, the
sub-to-super inviscid transonic stationary wave (ρ̄(x; 0), ū(x; 0)) is linearly L∞

stable on any bounded space interval.

3.1 Setup and basic lemmas

We set up the linearization problem about a general smooth stationary wave of
system (1.4).

Set A(x) := ax(x)a−1(x), then system (1.4) becomes{
ρt + (ρu)x = −A(x)ρu,

(ρu)t + (ρu2 + P (ρ))x = −A(x)ρu2 + εA(x)ux + εuxx.
(3.19)

Let (ρ̄(x; ε), ū(x; ε)) be a smooth stationary wave of system (1.4) and set Ū =
(ρ̄, ρ̄ū)T ,

f(Ū) = (ρ̄ū, ρ̄ū2 + P (ρ̄))T and g(Ū) = (−ρ̄ū,−ρ̄ū2)T .

Then the linearized equation of system (3.19) with respect to Ū is

Ut + (Df(Ū) · U)x = A(x)Dg(Ū) · U + εM0U + εM1Ux + εM2Uxx,
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or

Ut = (A(x)Dg(Ū)− (Df(Ū))x+ εM0)U + (εM1−Df(Ū))Ux+ εM2Uxx, (3.20)

where U = (ρ, ρu)T ,

Df(Ū) =

(
0 1

−ū2 + P ′(ρ̄) 2ū

)
, Dg(Ū) =

(
0 −1

ū2 −2ū

)
,

M0 =

(
0 0

−A(x)(ρ̄−1ū)x − (ρ̄−1ū)xx −A(x)ρ̄−2ρ̄x − (ρ̄−2ρ̄x)x

)
,

M1 =

(
0 0

−A(x)ρ̄−1ū− 2(ρ̄−1ū)x A(x)ρ̄−1 − 2ρ̄−2ρ̄x

)
, M2 =

(
0 0

−ρ̄−1ū ρ̄−1

)
.

It’s easy to see that the eigenvalues λ1(Ū), λ2(Ū) of Df(Ū) and the corre-
sponding matrix representation Q(Ū) of the left eigenvectors of Df(Ū) are

λ1(Ū) = ū−
√
P ′(ρ̄), λ2(Ū) = ū+

√
P ′(ρ̄),

and

Q(Ū) =

(
−λ2(Ū) 1

−λ1(Ū) 1

)
=

(
−ū−

√
P ′(ρ̄) 1

−ū+
√
P ′(ρ̄) 1

)
.

Furthermore, Q(Ū) is invertible as long as λ1(Ū) 6= λ2(Ū), and

Q−1(Ū) =
1

λ1(Ū)− λ2(Ū)

(
1 −1

λ1(Ū) −λ2(Ū)

)

=
−1

2
√
P ′(ρ̄)

(
1 −1

ū−
√
P ′(ρ̄) −ū−

√
P ′(ρ̄)

)
.

Let V := Q(Ū)U and multiply equation (3.20) by Q(Ū) to get

Vt = R0(x; ε)V +R1(x; ε)Vx +R2(x; ε)Vxx, (3.21)

where

R0(x; ε) :=Q
(
A(x)Dg − (Df)x +DfQ−1Qx

)
Q−1+

εQ
(
M0 −M1Q

−1Qx + 2M2(Q−1Qx)
2 −M2Q

−1Qxx

)
Q−1,

R1(x; ε) :=−Q(Df − εM1 + 2εM2Q
−1Qx)Q

−1,

R2(x; ε) :=εQM2Q
−1.

A crucial fact is the following special structure

Proposition 3.1. Both R1(x; ε) and R2(x; ε) are symmetric. In particular,

R1(x; ε) =

(
−λ1(Ū) 0

0 −λ2(Ū)

)
+O(ε) and R2(x; ε) =

ερ̄−1

2

(
1 1

1 1

)
.
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Proof. In fact, a direct computation gives

R2(x; ε) =− ε

2
√
P ′

(
−ū−

√
P ′ 1

−ū+
√
P ′ 1

)(
0 0

−ρ̄−1ū ρ̄−1

)(
1 −1

ū−
√
P ′ −ū−

√
P ′

)

=
ερ̄−1

2

(
1 1
1 1

)
.

For R1(x; ε) = −QDfQ−1 + εQM1Q
−1 − 2εQM2Q

−1QxQ
−1, we have

−QDfQ−1 =

(
−λ1 0

0 −λ2

)
.

It thus suffices to show QM1Q
−1 − 2QM2Q

−1QxQ
−1 is symmetric. Note that

QM1Q
−1 =

(
−ū−

√
P ′ 1

−ū+
√
P ′ 1

)(
0 0

−Aρ̄−1ū− 2(ρ̄−1ū)x Aρ̄−1 − 2ρ̄−2ρ̄x

)
Q−1

=

(
−Aρ̄−1ū− 2(ρ̄−1ū)x Aρ̄−1 − 2ρ̄−2ρ̄x

−Aρ̄−1ū− 2(ρ̄−1ū)x Aρ̄−1 − 2ρ̄−2ρ̄x

)
Q−1 =

1√
P ′

(
n11 n12

n21 n22

)

where

n11 = n21 =(ρ̄−1ū)x + 1/2Aρ̄−1
√
P ′ + ūρ̄−2ρ̄x − ρ̄−2ρ̄x

√
P ′,

n12 = n22 =− (ρ̄−1ū)x + 1/2Aρ̄−1
√
P ′ − ūρ̄−2ρ̄x − ρ̄−2ρ̄x

√
P ′,

and

−2QM2Q
−1QxQ

−1 =
1√
P ′

(
−ρ̄−1ūx ρ̄−1ūx

−ρ̄−1ūx ρ̄−1ūx

)
.

Thus the symmetry of QM1Q
−1 − 2QM2Q

−1QxQ
−1 follows from

n12 + ρ̄−1ūx = n21 − ρ̄−1ūx

that can be checked easily. This verifies the statements.

Next, we consider the regularity of the matrices Ri(x; 0), i = 0, 1, 2 by
investigating the smoothness of ρ̄x(x), here ρ̄(x) = ρ̄(x; 0) is the sub-to-super
inviscid transonic stationary wave. Since we assume that ax(0) = 0, the right
hand side of the first equation in (2.16) is of the form 0/0 as x → 0. By
L’Hospital’s rule,

ρ̄x(0) := lim
x→0

ρ̄x(x) = −
( axx(0)m2

0a
−3(0)ρ̄−1

P ′′(ρ̄) + 2m2
0a
−2(0)ρ̄−3

)1/2

.
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In view of the first equality in (2.16), we have

ρ̄xx(x) = −ρ̄x
(3ax
a

+
3ρ̄x
ρ̄
− m2

0axxa
−3ρ̄− P ′′(ρ̄)ρ̄2ρ̄2

x − 2m2
0a
−2ρ̄−1ρ̄2

x

m2
0axa

−3ρ̄

)
(3.22)

for x 6= 0. Note that, by (2.16), the last term in (3.22) is of the form 0/0
as x → 0. Applying L’Hospital’s rule again (with tedious computations), we
obtain

lim
x→0

m2
0axxa

−3ρ̄− P ′′(ρ̄)ρ̄2ρ̄2
x − 2m2

0a
−2ρ̄−1ρ̄2

x

m2
0axa

−3ρ̄

= lim
x→0

(m2
0axxa

−3ρ̄)−1 · (m2
0axxxa

−3ρ̄+m2
0axxa

−3ρ̄x − P ′′′(ρ̄)ρ̄2ρ̄3
x − 2P ′′(ρ̄)ρ̄ρ̄3

x−
2P ′′(ρ̄)ρ̄2ρ̄xρ̄xx + 2m2

0a
−2ρ̄−2ρ̄3

x − 4m2
0a
−2ρ̄−1ρ̄xρ̄xx). (3.23)

Suppose axx(0) > 0, taking limit x → 0 on both sides of (3.22), then (3.23)
implies

ρ̄xx(0) := lim
x→0

ρ̄xx(x)

= − ρ̄x(0)

3

( ρ̄x(0)

ρ̄(0)
−

lim
x→0

axxx(x)

axx(0)
+ ρ̄3

x(0)
P ′′′(ρ̄(0)) + 3P ′′(ρ̄(0))ρ̄−1(0)

m2
0axx(0)a−3(0)ρ̄−1(0)

)
.

Therefore, the continuity of axxx(x) at x = 0 implies the continuity of ρ̄xx(x) at
x = 0.

According to the above arguments, the conditions ax(0) = 0, axx(0) > 0,
and the continuity of axxx(x) ensure the continuity of ρ̄x(x) and ρ̄xx(x), and
hence the continuity of R0(x; 0), R0x(x; 0) and R1x(x; 0). Moreover, if

lim
x→±∞

|axx(x)/ax(x)| ≤ A for some constant A > 0, (3.24)

that is a(x) converges with exponential rates to a± as x → ±∞, then (3.22)
implies that

|ρ̄xx(x)| ≤ C|ρ̄x(x)| for all x ∈ R, (3.25)

where C > 0 is a constant. The inequality (3.25) will help us to obtain the
energy estimates in the following subsection.

3.2 L2- and H1- energy estimates for the inviscid case

In this subsection, we study the L2- and H1- energy estimates for problem
(3.21) in inviscid case, i.e. ε = 0. For convenience, we simplify the notations
Ri(x) := Ri(x; 0) for i = 0, 1 and consider the following initial value problem:{

Vt = R0(x)V +R1(x)Vx,

V (x, 0) = V0(x), V (±∞, t) = Vx(±∞, t) = 0.
(3.26)
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Let V = V (x, t) ∈ H1(R) be the solution of (3.26), we define the L2- and H1-
energy functions by

E0(t) := ‖V (·, t)‖L2(R) and E1(t) := ‖Vx(·, t)‖L2(R),

respectively. Multiply equation (3.26) by V T and integrate it with respect to x
over (−∞,∞) (the limits of the integral will be omitted in the sequel), we get

1

2

dE2
0

dt
=

∫
V TVtdx =

∫
V TR0V dx+

∫
V TR1Vxdx.

Since both R1(x) is symmetric and continuously differentiable, we have∫
V TR1Vxdx =− 1

2

∫
V TR1xV dx.

Hence,

1

2

dE2
0

dt
=

∫
V T
(
R0 −

1

2
R1x

)
V dx =

∫
V TL(x)V dx, (3.27)

where

L(x) :=R0(x)− 1

2
R1x(x) = R0(x) +

1

2
diag[(λ1(Ū))x, (λ2(Ū))x]2×2.

Similarly, multiplying V T
xx and integrating by parts, we get

1

2

dE2
1

dt
=−

∫
V T
xxR0V dx−

∫
V T
xxR1Vxdx

=

∫
V T
x

(
R0 +

1

2
R1x

)
Vxdx+

∫
V T
x R0xV dx

=

∫
V T
x H(x)Vxdx+

∫
V T
x R0xV dx,

(3.28)

where

H(x) :=R0(x) +
1

2
R1x(x) = R0(x)− 1

2
diag[(λ1(Ū))x, (λ2(Ū))x]2×2.

Recall from Lemma 2.8 that, for fixed geometry of nozzle, there existsm∗ > 0
depending on a(0) and a− = a(−∞) only (not the whole geometry of the
nozzle) so that if (ρ̄(x), ū(x)) is a sub-to-super transonic stationary wave with
a−ρ̄−ū− = m0 < m∗ then 2ū2

− > P ′(ρ̄−). In the following, we introduce several
important lemmas related to sub-to-super inviscid transonic stationary waves
with this condition.

Lemma 3.2. Let (ρ̄(x), ū(x)) be the sub-to-super inviscid transonic stationary
wave. If 2ū2

− > P ′(ρ̄−), then, for all x,

`1(x) :=4ū6 − 4ū4P ′(ρ̄) + 3ū2(P ′(ρ̄))2 − (P ′(ρ̄))3 > 0,

`2(x) :=2ū3 − 2ū2(P ′(ρ̄))1/2 + (P ′(ρ̄))3/2 > 0,

`3(x) :=2ū3 + 2ū2(P ′(ρ̄))1/2 − (P ′(ρ̄))3/2 > 0.
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Proof. First of all, by Young’s inequality, we have

2ū3 + (P ′(ρ̄))3/2 ≥ 3ū2(P ′(ρ̄))1/2 or
2

3

(
2ū3 + (P ′(ρ̄))3/2

)
≥ 2ū2(P ′(ρ̄))1/2.

Thus, `3(x) > 0 without the assumption that 2ū2
− > P ′(ρ̄). Note that `1(x) =

`2(x)`3(x) − ū2(P ′(ρ̄))2. It follows that `1(x) > 0 implies `2(x) > 0 . It thus
suffices to show that `1(x) > 0. Now

`1(x) = (2ū2 − P ′(ρ̄))
(
2ū4 − ū2P ′(ρ̄) + (P ′(ρ̄))2

)
.

Therefore, `1(x) > 0 if 2ū2−P ′(ρ̄) > 0 for all x. It follows from (2.7) with ε = 0
that ūx = −ū−1ρ̄−1P ′(ρ̄)ρ̄x. Hence,

d

dx
(2ū2 − P ′(ρ̄)) = −ρ̄x

(4P ′(ρ̄)

ρ̄
+ P ′′(ρ̄)

)
> 0.

Therefore, `1(x) > 0 if 2ū2
− − P ′(ρ̄−) > 0. The proof is complete.

Lemma 3.3. Let (ρ̄(x), ū(x)) be the sub-to-super inviscid transonic stationary
wave with 2ū2

− > P ′(ρ̄−). Then, there exists a constant α > 0 such that

V TL(x)V < αρ̄x|V |2 for any V ∈ R2.

Proof. First, it follows from (2.7) with ε = 0 that

aρ̄xū+ aρ̄ūx + axρ̄ū = 0 and ρ̄ūūx + P ′(ρ̄)ρ̄x = 0.

Thus,

A(x) =− (ρ̄−1ρ̄x + ū−1ūx) = −ρ̄−1ū−2ρ̄x(ū
2 − P ′(ρ̄)),

λ1x =− ρ̄x
(P ′(ρ̄)

ρ̄ū
+

P ′′(ρ̄)

2
√
P ′(ρ̄)

)
, λ2x = −ρ̄x

(P ′(ρ̄)

ρ̄ū
− P ′′(ρ̄)

2
√
P ′(ρ̄)

)
.

(3.29)

Recall that R0(x) = A(x)QDgQ−1 −Q(Df)xQ
−1 +QDfQ−1QxQ

−1. We have

A(x)QDgQ−1 = A(x)

 P ′

λ1 − λ2

− λ1 − P ′

λ1 − λ2
P ′

λ1 − λ2

− P ′

λ1 − λ2

− λ2

 ,

Q(Df)xQ
−1 =

1

λ1 − λ2

(
λ1(λ1 + λ2)x − (λ1λ2)x (λ1λ2)x − λ2(λ1 + λ2)x

λ1(λ1 + λ2)x − (λ1λ2)x (λ1λ2)x − λ2(λ1 + λ2)x

)
,

QDfQ−1QxQ
−1 = − 1

λ1 − λ2

(
λ1λ2x −λ1λ2x

λ2λ1x −λ2λ1x

)
.
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Therefore,

R0(x) =


AP ′(ρ̄)− λ1λ2x

λ1 − λ2

− Aλ1 − λ1x
λ2λ2x − AP ′(ρ̄)

λ1 − λ2

AP ′(ρ̄)− λ1λ1x

λ1 − λ2

λ2λ1x − AP ′(ρ̄)

λ1 − λ2

− Aλ2 − λ2x

 ,

L(x) =R0(x) +
1

2
diag[λ1x, λ2x]2×2

=


AP ′(ρ̄)− λ1λ2x

λ1 − λ2

− Aλ1 −
λ1x

2

λ2λ2x − AP ′(ρ̄)

λ1 − λ2

AP ′(ρ̄)− λ1λ1x

λ1 − λ2

λ2λ1x − AP ′(ρ̄)

λ1 − λ2

− Aλ2 −
λ2x

2

 .

With a careful computation, we obtain that L(x) = ρ̄xK = ρ̄x[kij(x)]2×2 where

k11(x) =
1

ρ̄

(
ū−

√
P ′(ρ̄)

)
+
P ′(ρ̄)

√
P ′(ρ̄)

2ρ̄ū2
+
ūP ′′(ρ̄)

4P ′(ρ̄)

=
1

2ρ̄ū2

(
2ū3 − 2ū2(P ′(ρ̄))1/2 + (P ′(ρ̄))3/2

)
+
ūP ′′(ρ̄)

4P ′(ρ̄)
,

k12(x) =
(
ū+

√
P ′(ρ̄)

)(P ′(ρ̄)

2ρ̄ū2
− P ′′(ρ̄)

4P ′(ρ̄)

)
,

k21(x) =
(
ū−

√
P ′(ρ̄)

)(P ′(ρ̄)

2ρ̄ū2
− P ′′(ρ̄)

4P ′(ρ̄)

)
,

k22(x) =
1

ρ̄
(ū+

√
P ′(ρ̄))− P ′(ρ̄)

√
P ′(ρ̄)

2ρ̄ū2
+
ūP ′′(ρ̄)

4P ′(ρ̄)

=
1

2ρ̄ū2

(
2ū3 + 2ū2(P ′(ρ̄))1/2 − (P ′(ρ̄))3/2

)
+
ūP ′′(ρ̄)

4P ′(ρ̄)
.

The inequalities `2(x) > 0 and `3(x) > 0 in Lemma 3.2 imply k11(x) > 0 and
k22(x) > 0. Therefore, the matrix K is positive definite if

∆(K) := 4k11(x)k22(x)− (k12(x) + k21(x))2 > 0. (3.30)

Note that, with `1(x) in Lemma 3.2,

4k11(x)k22(x) =
1

ρ̄2ū4

(
`1(x) + ū2(P ′(ρ̄))2

)
+

2ū2P ′′(ρ̄)

ρ̄P ′(ρ̄)
+
ū2(P ′′(ρ̄))2

4(P ′(ρ̄))2
,

(k12(x) + k21(x))2 =
(P ′(ρ̄)

ρ̄ū
− ūP ′′(ρ̄)

2P ′(ρ̄)

)2

=
(P ′(ρ̄))2

ρ̄2ū2
− P ′′(ρ̄)

ρ̄
+
ū2(P ′′(ρ̄))2

4(P ′(ρ̄))2
.

Therefore,

∆(K) =
`1(x)

ρ̄2ū4
+

2ū2P ′′(ρ̄)

ρ̄P ′(ρ̄)
+
P ′′(ρ̄)

ρ̄
> 0.

Thus K is positive definite. This completes the proof.
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Denote κ0 = 1 +
√

1 +
√

2. Then we have

Lemma 3.4. Let (ρ̄(x), ū(x)) be the sub-to-super inviscid transonic stationary
wave with 2ū2

− > P ′(ρ̄−). Under the further condition that κ2
0P
′(ρ̄) ≥ ρ̄P ′′(ρ̄),

there there a constant d > 0 such that

V TH(x)V < −2dρ̄x|V |2 for any V ∈ R2.

Proof. It’s clear that

H(x) = L(x)− diag[(λ1(Ū))x, (λ2(Ū))x]2×2.

Let H(x) = ρ̄x[ξij(x)]2×2. Then, ξ12(x) = k12(x), ξ21(x) = k21(x), and

ξ11(x) =k11(x) +
(P ′
ρ̄ū

+
P ′′

2
√
P ′

)
> 0,

ξ22(x) =k22(x) +
(P ′
ρ̄ū
− P ′′

2
√
P ′

)
=

1

2ρ̄ū2

(
2ū3 + 2ū2(P ′)1/2 − (P ′)3/2

)
+
( ūP ′′

4P ′
+
P ′

ρ̄ū

)
− P ′′

2
√
P ′

≥ ū
ρ̄

+

√
P ′′

ρ̄
− P ′′

2
√
P ′

>

√
P ′√
2ρ̄

+

√
P ′′

ρ̄
− P ′′

2
√
P ′

=
1√

2ρ̄
√
P ′

(
P ′ +

√
2ρ̄P ′′

√
P ′ − ρ̄P ′′√

2

)
=

1√
2ρ̄
√
P ′

(√
P ′ −

√
ρ̄P ′′

κ0

)(√
P ′ + κ0

√
ρ̄P ′′√

2

)
≥ 0,

since κ2
0P
′(ρ̄) ≥ ρ̄P ′′(ρ̄). Furthermore, from

k22 − k11 =
1

ρ̄ū2

(
2ū2(P ′)1/2 − (P ′)3/2

)
> 0,

k11 + k22 =
2ū

ρ̄
+
ūP ′′

2P ′
>
ūP ′′

2P ′
, ∆(K) >

P ′′

ρ̄
,

we get

4ξ11(x)ξ22(x)− (ξ12(x) + ξ21(x))2

=∆(K) + 4(k11 + k22)
P ′

ρ̄ū
+ 2(k22 − k11)

P ′′

P ′1/2
+

P ′2

ρ̄2ū2
− P ′′2

4P ′

>
P ′′

ρ̄
+

2P ′′

ρ̄
− P ′′2

4P ′
=

(12P ′ − ρ̄P ′′)P ′′
4ρ̄P ′

> 0,

since 12P ′ > κ2
0P
′ ≥ ρ̄P ′′. Thus the matrix H(x) is negative definite.

Remark 3.5. The condition κ2
0P
′(ρ̄) ≥ ρ̄P ′′(ρ̄) in Lemma 3.4 holds true for

the usual γ-law of pressure P .

18



Following the results of Lemmas 3.3 and 3.4, we obtain the energy estimates.

Proposition 3.6. Assume ε ≥ 0 and small enough. Let (ρ̄(x), ū(x)) be the
sub-to-super inviscid transonic stationary wave with 2ū2

− > P ′(ρ̄−).

(1) E0(t) in decreasing in t.

(2) If κ2
0P
′(ρ̄) ≥ ρ̄P ′′(ρ̄), then there exists a constant C1 > 0 such that

C1E
2
0(t) + E2

1(t) is decreasing in t.

Proof. (1) According to Lemma 3.3, we have

1

2

dE0

dt
=

∫
V TL(x)V dx < −α

∫
|ρ̄x||V |2dx < 0. (3.31)

(2) From the proof of Lemma 3.3, R0(x) has the form R0(x) = ρ̄x[ηij]2×2.
Then, for all x ∈ R, the inequality (3.25) implies that

‖R0x(x)‖ ≤ |ρ̄xx(x)| · ‖[ηij]2×2‖+ |ρ̄x(x)| ·
∥∥∥ d
dx

[ηij]2×2

∥∥∥ ≤ C̄|ρ̄x(x)|

for some constant C̄ > 0. Therefore, by Lemma 3.4 and (3.25), we have

1

2

dE2
1

dt
=

∫
V T
x H(x)Vxdx+

∫
V T
x R0x(x)V dx

<− 2d

∫ ∞
−∞
|Vx|2|ρ̄x|dx+ d

∫ ∞
−∞
|Vx|2|ρ̄x|dx+ C2

∫ ∞
−∞
|V |2|ρ̄x|dx

=− d
∫ ∞
−∞
|Vx|2|ρ̄x|dx+ C2

∫ ∞
−∞
|V |2|ρ̄x|dx (3.32)

for some constant C2 > 0. Let us choose a C1 > 0 such that αC1 > C2. Suppose
ε = 0, then C1×(3.31)+(3.32) gives

1

2

d{C1E
2
0 + E2

1}
dt

≤− (C1α− C2)

∫ ∞
−∞
|V |2|ρ̄x|dx− d

∫ ∞
−∞
|Vx|2|ρ̄x|dx < 0.

The proof is complete.

From the results of Proposition 3.6, we only know that E0(t) and C1E
2
0(t) +

E2
1(t) are strictly decreasing in t. However, this fact does not imply that E0(t)

and E1(t) are decreasing to zero. Thus, instead of considering the L2 and H1

linear stabilities in the whole space domain, we consider bounded space interval
and show that the sub-to-super inviscid stationary wave is linearly L∞ stable
in next subsection.
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3.3 L∞ linear stability for the sub-to-super inviscid sta-
tionary wave

Now we investigate the L∞ linear stabilities on any bounded space interval
for the smooth sub-to-super inviscid stationary wave. Let M > 0 be a fixed
constant. Suppose V (x, t) satisfies (3.26), for any δ > 0 we denote the set Aδ
by

Aδ :=
{
t ≥ 0 :

∫ M

−M
|V (x, t)|2dx ≥ δE2

0(t)
}
.

First, we claim that Aδ is a well-defined measurable set in [0,∞). Note that
E2

0(t) is a decreasing function on [0,∞). Integrating equation (3.26) from −M
to M , the symmetry property of R1(x) gives

1

2

d

dt
‖V (·, t)‖2

L2(−M,M) =

∫ M

−M
V TR0(x)V dx+

∫ M

−M
V TR1(x)Vxdx

=
1

2
V TR1V

∣∣∣∣M
−M

+

∫ M

−M
V TL(x)V dx.

Then Lemma 3.3 implies

d

dt
‖V (·, t)‖2

L2(−M,M) ≤ V TR1(x)V
∣∣M
−M . (3.33)

By part (2) of Proposition 3.6, we observe that V (·, t) ∈ L∞(0,∞;H1(R)).
Thus, ‖V (·, t)‖L2 is bounded on R+. Moreover, Sobolev embedding theorem
gives V (·, t) ∈ C0,1/2(R) and ‖V (·, t)‖C0,1/2 ≤ C3 for t ∈ R+. For t > 0, we
choose x̄t ∈ [−M,M ] such that

|V (x̄t, t)| = min
x∈[−M,M ]

|V (x, t)|.

The boundedness of ‖V (·, t)‖L2 implies that |V (x̄t, t)| ≤ C4 for some constant
C4 > 0. Hence, we have

|V (x, t)| ≤ |V (x̄t, t)|+ ‖V (·, t)‖C0,1/2|x− x̄t|1/2 ≤ C4 + (2M)1/2C3

for (x, t) ∈ [−M,M ] × R+. Then it follows from (3.33), the boundedness of
V (x, t) and (ρ̄(x), ū(x)) that ‖V (·, t)‖2

L2(−M,M) is Lipschitz continuous on [0,∞).

Therefore, Aδ is a measurable set in [0,∞) and our claim follows.

Next, we claim that, for any constant 0 < M <∞,∫ M

−M
|V (x, t)|2dx→ 0 as t→∞. (3.34)

It suffices to prove for the case E0(t) ≥ C5 for some constant C5 > 0. Otherwise,
the inequality (3.31) gives E2

0(t) → 0 as t → ∞, which trivially implies the
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desired result (3.34). For the case E0(t) ≥ C5 for some constant C5 > 0, we
first show that |Aδ| < ∞ for any δ > 0, where | · | denotes the usual Lebesgue
measure on [0,∞). If not, then there exists a constant δ > 0 such that |Aδ| =∞.
Since |ρ̄x(x)| ≥ C6 for some constant C6 > 0 and x ∈ [−M,M ], then for t ∈ Aδ,
the inequality (3.31) gives

1

2

dE2
0(t)

dt
≤ −C6α

∫ M

−M
|V (x, t)|2dx ≤ −C6αδE

2
0(t). (3.35)

Thus, (3.35) tells that there exists a constant C7 > 0 such that

1

2

dE2
0

dt
≤ −C7 < 0 for t ∈ Aδ,

which implies

E2
0(t) ≤ E2(0)− C7|Aδ ∩ [0, t)| < 0

for t > T provided T is large enough. This fact contradicts to E2
0(t) ≥ 0. Hence,

|Aδ| <∞ for any δ > 0. Let Tδ > 0 be large enough such that |Aδ∩[Tδ,∞)| < δ.
By the definition of Aδ, we know that∫ M

−M
|V (x, t)|2dx < δE2

0(t) ≤ δE2
0(0)

for t > Tδ except for t ∈ Aδ ∩ [Tδ,∞). Since h(t) := ‖V (·, t)‖2
L2(−M,M) is

Lipschitz continuous on [0,∞), we have∫ M

−M
|V (x, t)|2dx ≤ δ{E2

0(0) + ‖h‖C0,1} for t ≥ Tδ,

which gives the desired result (3.34).

Now, for t > 0, we choose x̄t ∈ [−M,M ] such that

|V (x̄t, t)| = min
x∈[−M,M ]

|V (x, t)|.

The fact that V (·, t) ∈ C0,1/2(R) and (3.34) indicate that

|V (x̄t, t)| → 0 as t→∞. (3.36)

According to the result of part (2) of Lemma 3.6, we have∫ M

−M
|Vx(x, t)|2dx ≤ E2

1(t; 0) ≤ C1E
2
0(0) + E2

1(0) for all t ≥ 0. (3.37)

Therefore, for x ∈ [−M,M ], we have

|V (x, t)|2 = |V (x̄t, t)|2 + 2

∫ x

x̄t

V T (y, t)Vx(y, t)dy

≤ |V (x̄t, t)|2 + 2
(∫ M

−M
|V (y, t)|2dy

)1/2(∫ M

−M
|Vx(y, t)|2dy

)1/2

.
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It follows from (3.36), (3.34), and (3.37) that

sup
x∈[−M.M ]

|V (x, t)| → 0 as t→∞.

In conclusion, we obtain the following stability result.

Theorem 3.7. Let (ρ̄(x), ū(x)) be the smooth sub-to-super inviscid transonic
stationary wave of (1.4). Assume a(x) satisfies axx(0) > 0 and condition (3.25),

ū− >
√
P ′(ρ̄−)/2 and κ2

0P
′(ρ̄) ≥ ρ̄P ′′(ρ̄),

where κ0 = 1 +
√

1 +
√

2. Then, on any bounded space interval, (ρ̄(x), ū(x)) is
linearly L∞-stable.

Remark 3.8. According to the geometric singular perturbation theory, we know
that the sub-to-super viscous stationary waves of (1.4) Ū(x; ε) = (ρ̄(x; ε), ū(x; ε))
converge to the sub-to-super inviscid stationary wave Ū(x; 0) = (ρ̄(x; 0), ū(x; 0))
as ε tends to 0. However, it’s unknown that Ūx(x; ε) and Ūxx(x; ε) converge to
Ūx(x; 0) and Ūxx(x; 0) or not. If yes, by the same arguments, we can obtain
the similar result of Theorem 3.7 for the case of sub-to-super viscous stationary
waves.

References

[1] S. R. Chakravarthy and S. Osher, Numerical experiments with the Osher
upwind scheme for the Euler equations, AIAA J. 21 (1983), pp. 1241-1248.

[2] R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, In-
terscience, New York, 1948.

[3] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 2nd
edition, Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences] 325, Springer-Verlag, Berlin, 2005.

[4] F. Dumortier and R. Roussarie, Canard cycles and center manifolds, with
an appendix by C. Z. Li, Mem. Amer. Math. Soc. 121 (1996), no. 577.

[5] P. Embid, J. Goodman and A. Majda, Multiple steady states for 1-D tran-
sonic flow, SIAM J. Sci. Stat. Comput. 5 (1984), pp. 21-41.

[6] N. Fenichel, Persistence and smoothness of invariant manifolds and flows,
Indiana Univ. Math. J. 21 (1971), pp. 193-226.

[7] N. Fenichel, Geometric singular perturbation theory for ordinary differen-
tial equations, J. Differential Equations 31 (1979), pp. 53-98.

22



[8] M. Hirsch, C. Pugh, and M. Shub, Invariant Manifolds, Lecture Notes in
Math. 583, Springer-Verlag, New York, 1976.

[9] J. M. Hong, C.-H. Hsu and B.-C. Huang, Existence and uniqueness of
generalized stationary waves for viscous gas flow through a nozzle with
discontinuous cross section, J. Differential Equations 253 (2012), pp. 1088-
1110.

[10] J. M. Hong, C.-H. Hsu and W. Liu, Viscous standing asymptotic states of
isentropic compressible flows through a nozzle, Arch. Ration. Mech. Anal.
196 (2010), pp. 575-597.

[11] J. M. Hong, C.-H. Hsu and W. Liu, Viscous standing asymptotic states of
transonic flow through a nozzle of varying area, J. Differential Equations
248 (2010), pp. 50-76.

[12] C.K.R.T. Jones, Geometric singular perturbation theory in Dynamical Sys-
tems (Montecatini Terme, 1994), Lecture Notes in Math. 1609, Springer-
Verlag, Berlin, 1995, pp. 44-118.

[13] M. Krupa and P. Szmolyan, Extending geometric singular perturbation
theory to nonhyperbolic points-fold and canard points in two dimensions,
SIAM J. Math. Anal. 33 (2001), pp. 286–314.

[14] P. D. Lax, Hyperbolic system of conservation laws, II, Comm. Pure Appl.
Math. 10 (1957), pp. 537-566.

[15] H. W. Liepmann and A. Roshko, Elementary of Gas Dynamics, GALCIT
Aeronautical Series, New York: Wiely, 1957.

[16] T.-P. Liu, Quasilinear hyperbolic system, Comm. Math. Phys. 68 (1979),
pp. 141-172.

[17] T.-P. Liu, Transonic gas flow in a nozzle of varying area, Arch. Ration.
Mech. Anal. 80 (1982), pp. 1-18.

[18] T.-P. Liu, Nonlinear stability and instability of transonic flows through a
nozzle. Comm. Math. Phys. 83 (1982), pp. 243-260.

[19] P. Szmolyan and M. Wechselberger, Canards in R3, J. Differential Equa-
tions 177 (2001), pp. 419-453.

[20] P. Szmolyan and M. Wechselberger, Relaxation oscillations in R3, J. Dif-
ferential Equations 200 (2004), pp. 69–104.

[21] G. R. Shubin, A. B. Stephens and H. Glaz, Steady shock tracking and
Newton’s method applied to one-dimensional nozzle flow, J. Comput. Phys.
39 (1980), pp. 364-374.

23



[22] D. Serre, Systems of conservation laws. 1. Hyperbolicity, entropies, shock
waves, Translated from the 1996 French original by I. N. Sneddon, Cam-
bridge Univ. Press, Cambridge, 1999.

[23] D. Serre, Systems of conservation laws. 2. Geometric structures, oscil-
lations, and initial-boundary value problems, Translated from the 1996
French original by I. N. Sneddon. Cambridge Univ. Press, Cambridge, 2000.

[24] D. H. Smith, Non-uniqueness and multi-shock solutions for transonic flows,
IMA J. Appl. Math. 71 (2007), pp. 120-132.

24


