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Abstract

We consider ionic flows through an ion channel via a quasi-one-dimensional
classical Poisson-Nernst-Planck model. The specific biological setup involves
ionic solutions with three ion species and the permanent charge is set to be
zero. It is known that, for ionic flows with two ion species, the spatial profiles
of the electric potential and the ion concentrations are monotonic, independent
of boundary conditions. For ionic flows with three or more ion species with at
least three different valences, depending on the boundary conditions, the profiles
could be oscillatory. In this work, for ionic mixtures with two cation species of
different valences and one anion species, we will provide a complete classifica-
tion in terms of boundary conditions on when the profiles are monotonic and
when they are oscillatory. This would be an important step for studies including
nonzero permanent charges.
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1 Introduction

1.1 A brief background of ion channels and ionic flows

Ionic flow, migration of charged particles, is essential for living organisms. Moving
through membrane channels, ionic flows provide communications between cells to
coordinate with each other for biological functions (see [15, 16, 17, 18, 19, 42, 45]).
Protein structures of ion channels can be viewed as nano valves for life (see, e.g.,
[5, 8, 9, 22]). Ionic flow properties are major concerns of physiological ion channels
and are controlled by the nonlinear interplay among permanent charges (protein struc-
ture), transmembrane electric potential, and boundary concentrations of ion species
involved. Ionic flow through ion channels is a special electrodiffusion process with
a number of specifics. It is a problem with multiple interacting physical parameters
and presents multi-scales too (see [1, 10, 11, 27, 28, 38, 39, 40, 41, 50]).
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While experimental technology of ionic flow properties has been constantly ad-
vanced since the time of Hodgkin and Huxley, the current-voltage (I-V) relation de-
fined in (1.5) below remains to be the major experimental measurement of ionic flows
(see, e.g., [2, 4, 7, 23]). The I-V relation is an input-output type information of an
average effect of physical parameters on ionic flows; in particular, it is still not pos-
sible to “measure/observe” internal dynamical behaviors of ionic flows, such as, the
spatial profiles of the electric potential and the ionic concentrations. This limitation
of experiments makes it difficult for researchers to extract quantitative information or
identify characteristics from experimental data that are critical for classifying general
behaviors/phenomena and understanding underlying mechanisms of ionic flows.

The aforementioned challenges strongly suggest the importance and uniqueness
of mathematical models and analysis and numerical simulations as complementary
tools to the physiological theory and experiments. Mathematical study could provide
deep correspondences from the multiple parameters involved to the internal dynamics
and to properties of ion channels, at least for the simplified settings used in many
biological experiments. The basic primitive models for ionic flows are the Poisson-
Nernst-Planck (PNP) type models and have been analyzed and simulated extensively.
The geometric singular perturbation theory, relying crucially on special structures of
the PNP models, has been developed in [11, 24, 27, 28, 32], which allows a systematical
study of several ion channel problems in [3, 12, 20, 25, 26, 29, 33, 34, 47, 48].

In this work, we consider a quasi-one-dimensional classical Poisson-Nernst-Planck
(cPNP) system for ionic flow involving three ion species with different valences. Our
focus is on basic behaviors of internal dynamics; that is, the monotonicity of the
spatial profiles of the electric potential and the ion concentrations. In the case of
zero permanent charge, it is known that the spatial profile of the electric potential is
monotonic (see, e.g., [28, 32]) and, for ionic flows with two ion species, the spatial
profiles of the ion concentrations are also monotonic, independent of boundary condi-
tions (see, e.g., [1, 11, 24, 26, 27, 30, 32, 46, 49]). On the other hand, for ionic flows
with three or more ion species with at least three different valences, depending on the
boundary conditions, the profiles of the ionic concentrations could be oscillatory (see,
e.g., [28, 32]). For ionic mixtures with three species (two cation species of different
valences and one anion species), we will provide more or less explicit criteria in terms
of boundary conditions for monotonic profiles and oscillatory profiles of the ionic
concentrations. This would be a first step for studies including nonzero permanent
charges (see, e.g.,[44]).

1.2 A quasi-one-dimensional model

For ionic solution involving n types of ion species, a quasi-one-dimensional stationary
PNP model is (see, e.g., [31, 35])

1

A(X)

d

dX

(
εr(X)ε0A(X)

dΦ

dX

)
= −e0

( n∑
s=1

zsCs +Q(X)

)
dJk
dX

= 0, −Jk =
1

kBT
Dk(X)A(X)Ck

dµk
dX

, k = 1, 2, · · · , n,
(1.1)

where X ∈ [a, b] is the coordinate along the longitudinal axis of the channel, A(X) is
the cross-section area of the channel over X, εr(X) is the relative dielectric coefficient,
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ε0 is the vacuum permittivity, e0 is the elementary charge, Q(X) is the permanent
charge density, kB is the Boltzmann constant, T is the absolute temperature; Φ is
the electric potential, and, for the k-th ion species, zk is the valence (the number of
charges per particle), Ck is the concentration, Jk(X) is the flux density through the
cross-section over X, Dk(X) is the diffusion coefficient, and µk is the electrochemical
potential depending on Φ and Ck.

The electrochemical potential µk = µidk + µexk consists of the ideal component µidk
and the excess component µexk . The ideal component µidk is given by

µidk = zke0Φ + kBT ln
Ck
C0

(1.2)

and accounts for point-charge effect, where C0 is a characteristic concentration. The
excess component µexk accounts for finite sizes of ions that is not completely under-
stood but has been approximated and tested extensively (see, e.g., [6, 13, 14, 21, 24,
36, 37, 43]). The classical PNP (cPNP) model deals only with the ideal component
µidk .

Associated to system (1.1), we consider boundary conditions, for k = 1, 2, · · · , n,

Φ(a) = V, Ck(a) = Lk > 0; Φ(b) = 0, Ck(b) = Rk > 0. (1.3)

For boundary conditions, one often imposes the electroneutrality conditions to avoid
sharp boundary layers (see, e.g., [47, 48] for a reason)

n∑
s=1

zsLs =

n∑
s=1

zsRs = 0. (1.4)

A major quantity from lab experiments is the I-V (current-voltage) relation de-
fined, in terms of solutions of the boundary value problem (BVP) (1.1) and (1.3), as
follows. For fixed Lk’s and Rk’s, a solution (Φ, Ck,Jk) of the BVP will depend on
the voltage V only. The stationary current (the flow rate of charges), I, is given by

I =

n∑
s=1

zsJs(V; {Lk}, {Rk}). (1.5)

1.3 The dimensionless quasi-one-dimensional PNP model

For convenience of mathematical analysis of the BVP (1.1) and (1.3), we will work
on a dimensionless form. Let C0 be a characteristic concentration of the problems,
for example,

C0 = max
1≤k≤n

{
Lk,Rk, sup

X∈[0,l]
|Q(X)|

}
.

Set
D0 = max

1≤k≤n

{
sup
X∈[0,l]

Dk(X)
}

and ε̂r = sup
X∈[0,l]

εr(X).
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Let

x =
X − a
b− a

, A(x) =
A(X)

(b− a)2
, Dk(x) =

Dk(X)

D0
, Q(x) =

Q(X)

C0
,

ε̄r(x) =
εr(X)

ε̂r
, ε2 =

ε̄rε0kBT

e2
0(b− a)2C0

, µ̄k =
1

kBT
µk,

φ(x) =
e0

kBT
Φ(X), ck(x) =

Ck(X)

C0
, Jk =

Jk
(b− a)C0D0

.

In terms of the new variables, the BVP (1.1) and (1.3) with µk = µidk given in
(1.2) becomes the following quasi-one-dimensional classical PNP:

ε2

A(x)

d

dx

(
ε̄r(x)A(x)

d

dx
φ

)
= −

n∑
s=1

zscs −Q(x),

dJk
dx

= 0, −Jk = Dk(x)A(x)
dck
dx

+Dk(x)zkckA(x)
dφ

dx
, k = 1, 2, . . . , n.

(1.6)

with the boundary conditions

φ(0) = V =
e0

kBT
V, ck(0) = lk =

Lk
C0

; φ(1) = 0, ck(1) = rk =
Rk
C0

. (1.7)

The electroneutrality boundary conditions in (1.4) and the I-V relation (1.5) read
now

n∑
s=1

zsls =
n∑
s=1

zsrs = 0 and I =
n∑
s=1

zsJs(V ; {lk}, {rk}).

The quasi-one-dimensional cPNP system (1.6) is a simplest PNP type model for
ionic flow. The purpose of this paper is to provide a detailed analysis to the BVP (1.6)
and (1.7) for n = 3 with z1 > z2 > 0 > z3 and with zero permanent charge Q = 0.
This work is based on the result in [32] on the existence and uniqueness of solutions of
the BVP (1.6) and (1.7) recalled below. We remark that, in [32], the authors assume
A(x) = 1 for simplicity. The result can be easily extended to general A(x) and we will
provide the result without details. It should become clear from the rest of the paper
that the BVP (1.6) and (1.7) even with Q = 0 is already quite involved. We believe
that the analysis provided in this paper will become a fundamental step and be useful
for further studies of more sophisticated PNP models that take into consideration of
permanent charges and ion sizes for ionic solutions with three and more ion species.

The rest of the paper is organized as follows. In Section 2, we review the relevant
general result in [32] that this paper is based upon and identify our main concerns
in this paper in terms of zeros of a meromorphic function g(z) defined by boundary
conditions. Section 3 focuses on three ion species and contains the main results
(Propositions 3.5, 3.6, and 3.8) as well as detailed analyses on the zeros of g(z) to
determine boundary conditions for monotonic or oscillatory spatial profiles of ionic
concentrations. In Section 4, we provide explicit formulas for fluxes and current in
terms of boundary conditions and the zeros of g(z). We expect that these explicit
formulas could be very useful for further studies on ionic flow properties.
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2 Relevant results from [32] on the BVP (1.6) and (1.7)

We now recall some relevant results in [32]. In [32], it took a uniform cross-section area
A(x) = 1. We will state the result for general A(x) and comment on the differences it
makes in the proofs in [32] at the end of this discussion. In the following, we assume

(A1) z1, z2, . . . , zn are nonzero and distinct, ε̄r(x) = 1, Q(x) = 0, and Dk(x) = 1 for
all k;

(A2) L = (l1, l2, . . . , ln)T 6= 0, R = (r1, r2, . . . , rn)T 6= 0, (lk, rk) 6= (0, 0) for any k,
and V > 0.

Remark 2.1. Regarding the assumption that V > 0 in (A2), we first comment that, if
V = 0, then the solution of the BVP (1.6) and (1.7) is given by

φ(x) = 0, ck(x) =
(

1− H(x)

H(1)

)
lk +

H(x)

H(1)
rk, Jk =

1

H(1)
(rk − lk),

where H(x) =

∫ x

0
A−1(s)ds. So we will not include this case in the remaining study.

Secondly, the BVP (1.6) and (1.7) has the apparent symmetry with respect to the
change x → 1 − x. In particular, the problem with V < 0 can be converted to that
with V > 0 as in (A2).

For Q = 0, the authors of [32] applied the geometric singular perturbation frame-
work developed in [28] to reduce the BVP (1.6) and (1.7) to a singular connect-
ing problem and the singular connecting problem is shown to be equivalent to: de-
termining a (column) vector f ∈ Rn so that the matrix D(f) = Γ − fbT , where
Γ = diag {z1, z2, . . . , zn} and b = (z2

1 , z
2
2 , . . . , z

2
n)T , satisfies

R = eV D(f)L

and, for C(τ) = eV D(f)τL ∈ Rn, τ ∈ [0, 1],

ck(τ) ≥ 0 for k = 1, 2, . . . , n.

We note that the matrix D(f) determines f uniquely. It turns out the special
structure of D(f) allows its eigenvalues to determine f (and hence D(f)) uniquely
too. In fact, one has

Theorem 2.1 (Theorem 3.1, [32]). Suppose λ1, . . . , λp are distinct eigenvalues of
D(f) with algebraic multiplicities s1, . . . , sp (so that s1 + s2 + . . .+ sp = n). Then

fj =
1

bj

∏p
k=1(zj − λk)sk∏

1≤k≤n,k 6=j(zj − zk)
for j = 1, 2, . . . , n.

Let g : C→ C be the meromorphic function given by

g(z) =

n∑
k=1

z2
krk

zk − z
− eV z

n∑
k=1

z2
klk

zk − z
. (2.1)
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Set

P1 =
{
k ∈ {1, 2, . . . , n} : rk 6= eV zk lk

}
,

P2 =
{
k ∈ {1, 2, . . . , n} : rk = eV zk lk

}
.

Then, P1 and P2 form a partition of {1, 2, . . . , n}, that is,

P1 ∩ P2 = ∅ and {1, 2, . . . , n} = P1 ∪ P2.

For k ∈ P1, zk is a simple pole of g(z) and, for k ∈ P2, zk is a removable singularity
of g(z). Let m = #(P1) be the number of elements in P1. Then n−m = #(P2).

For any integer p ≥ 0, define the (open) stripe Sp in C as

Sp =
{
z = x+ iy : y ∈

(
− (2p+ 1)π/V, (2p+ 1)π/V

)}
.

Theorem 2.2 (Theorem 3.5, [32]). The meromorphic function g(z) has infinite many
zeros. More precisely, for each integer p ≥ 0, g(z) has exactly m+ 2p zeros (counting
multiplicity) in the stripe Sp; in particular, g(z) has exactly m zeros in the stripe S0

and, for any p ≥ 1, g(z) has exactly one pair of complex conjugate zeros in Sp\Sp−1,
one in each connected component.

Since g(z) has exactly m zeros (counting multiplicity) in the stripe S0, the total
number of zeros (counting the multiplicities) and removable singularities of g(z) in
the stripe S0 is exactly n.

Let λ1, λ2, . . . , λp with multiplicities s1, s2, . . . , sp be all the zeros and the remov-
able singularities of g(z) in S0. Necessarily, s1 + s2 + . . . + sp = n. It turns out
λj ’s (counting the multiplicities) are exactly the eigenvalues of D := D(f). Then the
unique singular orbit is determined by

φ(τ) =V − τV, C(τ) = eV DτL, H(x(τ)) = V I−1

∫ τ

0
bTC(s) ds, (2.2)

where τ is an intermediate variable such that x(1) = 1. Furthermore, with J = If ,

J =
V

H(1)

∫ 1

0
ΓeV DsLds−R+ L, I =

n∑
s=1

zsJs =
V

H(1)

∫ 1

0
bT eV DsLds,

where Γ = dig{z1, z2, . . . , zn} and bT = (z2
1 , z

2
2 , . . . , z

2
n) are introduced previously

when D(f) is defined.

Note that if A(x) = 1, then H(x) = x and (2.2) is nothing but the formula (2.16)
in [32]. For general A(x), the only difference is, for example, in display (2.14) in [32],
there is an extra factor A−1(w) on the left-hand side of the w-equation, which leads
to the function H(x(τ)) on the left-hand side of (2.2).

3 Zeros of the function g(z) in (2.1) for n = 3

It is noticed that λ = 0 is always a zero of g(z) (and hence, an eigenvalue of D) due
to the electroneutrality boundary conditions

∑n
s=1 zsls =

∑n
s=1 zsrs = 0. For n = 2,

the other eigenvalue of D must be real too – in fact it is V −1(ln r1− ln l1). This is the
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reason for the spatial profiles of ionic concentrations to be monotonic for n = 2. It
is thus interesting to know, for n ≥ 3, when there are complex conjugate eigenvalues
and, most importantly, what the implications are to ionic flows. Our interest for
n = 3 in this paper is reduced to determine when the other two eigenvalues are real
and when they are complex (necessarily as a conjugate pair).

As mentioned above, we will consider n = 3 with z1 > z2 > 0 > z3, which includes
the cases for ion mixtures with Ca++, Na+ and Cl−, and with Ca++, K+ and Cl−.
We will work with the function g(z).

3.1 Preparations

For easy of notation, we introduce

Pz =

3∏
j=1

zj , Sl =

3∑
j=1

lj , Sr =

3∑
j=1

rj , Λl =

3∑
j=1

z2
j lj , Λr =

3∑
j=1

z2
j rj .

We first make some technical preparations.

Lemma 3.1. The function g(z) in (2.1) can be written as

g(z) = zg̃(z) where g̃(z) =
3∑
j=1

zjrj
zj − z

− eV z
3∑
j=1

zjlj
zj − z

.

Proof. It follows from the electroneutrality boundary conditions

3∑
j=1

zjrj =
3∑
j=1

zjlj = 0

that
3∑
j=1

z2
j rj

zj − z
=

3∑
j=1

zj(zj − z)rj + zzjrj
zj − z

= z

3∑
j=1

zjrj
zj − z

and
3∑
j=1

z2
j lj

zj − z
= z

3∑
j=1

zjlj
zj − z

.

The statement is a direct consequence.

Obviously, the other zeros λ2 and λ3 of g(z) under consideration are just those of
g̃(z). We introduce

h(z) =
1

Λl
g̃(z)

3∏
j=1

(z − zj).

Note that, for k ∈ {1, 2, 3}, zk is a removable singularity of g (an eigenvalue of D) if
rk = eV zk lk. In this case, zk is a zero of h(z). Thus,

Proposition 3.2. The other two eigenvalues λ2 and λ3 of D are exactly the zeros of
h(z) in the stripe S0.
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Lemma 3.3. The function h can be expressed as

h(z) = (z −ml)e
V z − ρ(z −mr), (3.1)

where

ml = −Sl
Λl
Pz > 0, mr = −Sr

Λr
Pz > 0, ρ =

Λr
Λl

> 0.

Proof. First of all,

3∏
j=1

(zj − z)
3∑
j=1

zjrj
zj − z

= z1(z2 − z)(z3 − z)r1 + z2(z1 − z)(z3 − z)r2 + z3(z1 − z)(z2 − z)r3

=
3∏
j=1

zj

3∑
j=1

rj − z(z1(z2 + z3)r1 + z2(z1 + z3)r2 + z3(z1 + z2)r3) + z2
3∑
j=1

zjrj .

Since
∑3

j=1 zjrj = 0 and

z1(z2 + z3)r1 + z2(z1 + z3)r2 + z3(z1 + z2)r3 =
3∑
j=1

zj

3∑
j=1

zjrj −
3∑
j=1

z2
j rj = −Λr,

one has
3∏
j=1

(zj − z)
3∑
j=1

zjrj
zj − z

= PzSr + Λrz.

Similarly,
3∏
j=1

(zj − z)
3∑
j=1

zjlj
zj − z

= PzSl + Λlz.

The formula (3.1) for h(z) then follows.

Lemma 3.4. The following relations hold. l1
l2
l3

 =


z1Λl+PzSl

z1(z1−z2)(z1−z3)
z2Λl+PzSl

z2(z2−z1)(z2−z3)
z3Λl+PzSl

z3(z3−z1)(z3−z2)

 and

 r1

r2

r3

 =


z1Λr+PzSr

z1(z1−z2)(z1−z3)
z2Λr+PzSr

z2(z2−z1)(z2−z3)
z3Λr+PzSr

z3(z3−z1)(z3−z2)

 ,
or equivalently, l1

l2
l3

 = Λl


z1−ml

z1(z1−z2)(z1−z3)
z2−ml

z2(z2−z1)(z2−z3)
z3−ml

z3(z3−z1)(z3−z2)

 and

 r1

r2

r3

 = Λr


z1−mr

z1(z1−z2)(z1−z3)
z2−mr

z2(z2−z1)(z2−z3)
z3−mr

z3(z3−z1)(z3−z2)

 .
In particular, if z1 > z2 > 0 > z3, then z2 ≤ ml,mr ≤ z1.

Proof. It is clear that Sl
0
Λl

 = W

 l1
l2
l3

 ,
 Sr

0
Λr

 = W

 r1

r2

r3

 ,
8



where

W =

 1 1 1
z1 z2 z3

z2
1 z2

2 z2
3

 .
Simple calculations yield

W−1 =


1

(z1−z2)(z1−z3) 0 0

0 1
(z2−z1)(z2−z3) 0

0 0 1
(z3−z1)(z3−z2)


 z2z3 −(z2 + z3) 1
z1z3 −(z1 + z3) 1
z1z2 −(z1 + z2) 1

 .
The relations claimed then follow directly. The range for ml and mr is a consequence
of lj ≥ 0 and rj ≥ 0.

3.2 Roots of h(z) = 0 in the stripe S0

Recall that we assume V > 0. To characterize λ2 and λ3, we consider three cases:

Case (a): mr = ml; Case (b): mr < ml; Case (c): mr > ml.

3.2.1 Cases (a) and (b)

For these two cases, λ2 and λ3 are real; more precisely, we have

Proposition 3.5. For Case (a) where ml = mr, one has

h(z) = (z −ml)(e
V z − ρ)

and it has two real zeros

λ2 = ml and λ3 =
ln ρ

V


> 0, if ρ > 1
= 0, if ρ = 1
< 0, if ρ < 1

.

For Case (b) where mr < ml, h(z) has two distinct real roots λ2 and λ3 satisfying
λ2 < 0, if ρmr < ml

λ2 = 0, if ρmr = ml

0 < λ2 < mr, if ρmr > ml

and λ3 > ml.

Proof. For Case (a), one has h(z) = (z −ml)(e
V z − ρ). The claim then follows. For

Case (b), we rewrite h(z) = 0 as hl(z) = hr(z) where

hl(z) =
1

ρ
eV z and hr(z) =

z −mr

z −ml
.

The statement follows easily from the graphs of hl(z) and hr(z) shown in Figure 1.
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Figure 1: Graphs in Case (b) mr < ml: first for ρmr < ml, second for ρmr = ml,
third for ρmr > ml
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3.2.2 Case (c) where mr > ml

We split this case into three subcases:

(c1) ρmr < ml; (c2) ρmr = ml; and (c3) ρmr > ml.

For Subcases (c1) and (c2), we have the following result.

Proposition 3.6. For Subcase (c1), h(z) = 0 has two real roots λ2 and λ3 with

λ2 < 0 < λ3 < ml.

For Subcase (c2), h(z) = 0 has two real roots λ2 and λ3 with
λ2 < 0 and λ3 = 0, if V < 1

ml
− 1

mr
λ2 = 0 and λ3 = 0, if V = 1

ml
− 1

mr
λ2 = 0 and 0 < λ3 < ml, if V > 1

ml
− 1

mr

.

Proof. For Subcase (c1) where mr > ml and ρmr < ml, the graphs of hl(z) and hr(z)
are plotted in Figure 2. Due to the fact that 1/ρ > mr/ml, in this subcase h(z) = 0
always has two real roots λ2 and λ3 with λ2 < 0 < λ3 < ml.
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Figure 2: Graphs of Subcase (c1) mr > ml and ρmr < ml

For Subcase (c2) where mr > ml and ρmr = ml, the graphs of hl(z) and hr(z)
are plotted in Figure 3. In this subcase h(z) = 0 has two real roots, at least one of
which must be zero. Now

h′l(0) =
V

ρ
=
V mr

ml
, h′r(0) =

mr −ml

m2
l

.

Clearly, if h′l(0) < h′r(0), then another root is negative, if h′l(0) = h′r(0), then 0 is a
double root, and if h′l(0) > h′r(0), then another root is positive. The statement then
follows.

11



-6 -4 -2 0 2 4 6

x

-1

-0.5

0

0.5

1

1.5

2

2.5

3

h
r
(z)

h
r
(z)

h
l
(z)

1/ρ m
r
/m

l

λ
3

λ
2

m
l m

r

1

-6 -4 -2 0 2 4 6

x

-1

0

1

2

3

4

5

h
l
(z)

h
r
(z)

h
r
(z)

1

m
l m

r
λ

2 λ
3

1/ρ m
r
/m

l

-4 -3 -2 -1 0 1 2 3 4

x

-1

0

1

2

3

4

5

1

λ
3

λ
2

1/ρ m
r
/m

l

m
r

m
l

h
r
(z)

h
r
(z)

h
l
(z)

Figure 3: Graphs in Subcase (c2) ρmr = ml: first for V < 1
ml
− 1

mr
, second for

V = 1
ml
− 1

mr
, third for V > 1

ml
− 1

mr

It remains to consider Subcase (c3) where mr > ml and ρmr > ml. To state the
result for this subcase, we introduce several quantities:

t =
2 + V (mr −ml) +

√
(2 + V (mr −ml))2 − 4

2
,

ρ(t) =
1

t
exp

 t2 −
(

1 + mr
ml

)
t+ mr

ml(
mr
ml
− 1
)
t

 .

(3.2)

Recall that we assume V > 0. The next result can be established easily.

Lemma 3.7. One has

t > 1, V =
(t− 1)2

(mr −ml)t
and ρ(t) < ρ(1/t).

Furthermore,

(i) if 0 < V < 1/ml − 1/mr, then 1 < t < mr/ml and ρ(t) is strictly decreasing;

(ii) if V > 1/ml − 1/mr, then t > mr/ml and ρ(t) is strictly increasing.
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(iii) For t > 1, ρ(1/t) is strictly increasing in t, and

lim
t→∞

ρ(1/t) =∞ and lim
t→1

ρ(1/t) = 1.

The main result contained in the next proposition is on the nature of λ2 and λ3

for this subcase.

Proposition 3.8. Consider Subcase (c3) where mr > ml and ρmr > ml.

(I) Concerning double roots λ2 = λ3, one has

(i) For V ∈
(

0, 1
ml
− 1

mr

)
or t ∈

(
1, mrml

)
, if ρ = ρ(t), then ρ ∈

(
ml
mr
, 1
)

and

there is a negative double root; if ρ = ρ(1/t), then ρ ∈
(

1, mr
ml
e
mr
ml
−ml
mr

)
and there is a double root in the interval (mr +ml, ∞).

(ii) For V ∈
(

1
ml
− 1

mr
, ∞

)
or t ∈

(
mr
ml
, ∞

)
, if ρ = ρ(t), then ρ ∈

(
ml
mr
, ∞

)
and there is a positive double root in the interval (0, ml); also, there exists

t0 >
mr
ml

such that ρ ∈
(
ml
mr
, 1
)

when t ∈
(
mr
ml
, t0

)
and ρ ∈ [1, ∞) when

t ∈ [t0, ∞); if ρ = ρ(1/t), then ρ ∈
(
mr
ml
e
mr
ml
−ml
mr , ∞

)
and there is a double

root in the interval (mr, mr +ml);

(iii) For V = 1
ml
− 1

mr
or t = mr

ml
, if ρ = ρ(t) = ml/mr, then λ2 = λ3 = 0, which

is shown in Subcase (c2); if ρ = ρ(1/t) = mr
ml
e
mr
ml
−ml
mr , then the double root

is mr +ml.

(II) If ρ ∈ (ρ(t), ρ(1/t)), then h(z) = 0 has a pair of complex conjugate roots.

(II) Concerning distinct real roots λ2 and λ3, one has

(i) for ρ > ρ(1/t), h(z) = 0 has two distinct positive roots λ2, λ3 > mr;

(ii) if ml
mr

< ρ < ρ(t), then h(z) = 0 has two negative roots for 0 < V < 1
ml
− 1
mr

and two positive roots in (0,ml) for V > 1
ml
− 1

mr
.

Proof. (I). We first consider the possible double root situation of h(z) = 0. This
happens when z satisfies

hl(z) = hr(z), h′l(z) = h′r(z),

that is,
1

ρ
eV z =

z −mr

z −ml
,

V

ρ
eV z =

mr −ml

(z −ml)2
.

Substituting the first equation into the second one, we have

V
z −mr

z −ml
=

mr −ml

(z −ml)2

or

z2 − (mr +ml)z +mlmr −
mr −ml

V
= 0,

13



which has two roots

ζ1,2 =
mr +ml ±

√
(mr +ml)2 − 4

(
mlmr − mr−ml

V

)
2

.

In order to have λ2 = λ3 = ζj for j = 1 or 2, ζj must satisfy

1

ρ
eV ζj =

ζj −mr

ζj −ml
and

V

ρ
eV ζj =

mr −ml

(ζj −ml)2
. (3.3)

Let us first consider the smaller root ζ1.

ζ1 =
mr +ml −

√
(mr +ml)2 − 4

(
mlmr − mr−ml

V

)
2

= ml −
1

V

(
1− 1

t

)
(3.4)

where t is given in (3.2).
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Figure 4: Graphs in Subcase (c3) ρmr > ml in smaller double root situation: first for
V < 1

ml
− 1

mr
, second for V > 1

ml
− 1

mr

From the graphs of hl(z) and hr(z) in Figure 4, one has ζ1 < ml, which is also
obvious from the last expressions in (3.4). From the first expression in (3.4), one has

ζ1 < 0, if V < 1
ml
− 1

mr
ζ1 = 0, if V = 1

ml
− 1

mr
0 < ζ1 < ml, if V > 1

ml
− 1

mr

.

It follows from the first condition in (3.3) that, if ζ1 = 0, then ρ = ml/mr, which
contradicts to ρmr > ml. Therefore, for V = 1/ml − 1/mr, h(z) = 0 cannot have
double roots. Note that this situation is covered in Subcase (c2).

Next we analyze the other two situations: V < 1
ml
− 1

mr
and V > 1

ml
− 1

mr
. From

Lemma 3.7,

V =
(t− 1)2

(mr −ml)t
. (3.5)

14



Hence, using the second relation in (3.3) with ζ1 and (3.4),

ρ =
1

t
exp

(
mlt

2 − (ml +mr)t+mr

(mr −ml)t

)
=

1

t
exp

 t2 −
(

1 + mr
ml

)
t+ mr

ml(
mr
ml
− 1
)
t

 =: ρ(t),

which is the same as the one defined in (3.2). Clearly if t := t(V ) is viewed as a
function of V , it is strictly increasing.

When 0 < V < 1/ml − 1/mr, from Lemma 3.7, one has 1 < t < mr/ml, and ρ(t)
is a strictly decreasing function of t as well as V on the given interval. Moreover, one
has ml/mr < ρ(t) < 1. Therefore, we have the following one-to-one relations

ρ ∈
(
ml

mr
, 1

)
←→ V ∈

(
0,

1

ml
− 1

mr

)
←→ t ∈

(
1,

mr

ml

)
.

Using (3.4) and (3.5), one can write

ζ1 = ml −
mr −ml

t− 1
= ml

t− mr
ml

t− 1
=: ζ1(t), (3.6)

that is, ζ1 can be viewed as a strictly increasing function of t, therefore also a strictly
increasing function of V . This shows the first part of (i).

When V > 1/ml − 1/mr, from Lemma 3.7, one has t > mr/ml > 1 and ρ(t) is a
strictly increasing function of t as well as V , satisfying ml

mr
< ρ(t) < ∞. Again, this

exhibits the one-to-one relations

ρ ∈
(
ml

mr
, ∞

)
←→ V ∈

(
1

ml
− 1

mr
, ∞

)
←→ t ∈

(
mr

ml
, ∞

)
.

On the given interval of V , ζ1 is the double root of h(z) = 0, that is,

λ2 = λ3 = ζ1 ∈ (0, ml).

Again, ζ1 is a strictly increasing function of t as well as V .
Because ml/mr < 1 and ρ(t) is increasing for t > mr/ml, there must be a unique

t0 ∈ (mr/ml,∞) such that ρ(t0) = 1. Thus, t0 must be a root of the equation

t = exp


(
t− mr

ml

)
(t− 1)(

mr
ml
− 1
)
t

 . (3.7)

It is obvious that ml
mr

< ρ(t) < 1 when mr
ml

< t < t0 and 1 ≤ ρ(t) < ∞ when
t0 ≤ t <∞. This proves the first part of (ii).

Note that (3.7) has two roots, one is t0 and the other is 1. Note that both ρ and
ζ1 can be considered as functions of V as well. Since

dV

dt
=

t2 − 1

(mr −ml)t2
,
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Figure 5: Graphs in Subcase (c3) ρmr > ml in larger double root situation

one has

dρ

dV
=
ml

(
t− mr

ml

)
t(t− 1)

exp


(
t− mr

ml

)
(t− 1)(

mr
ml
− 1
)
t

 ,
dζ1

dV
=

dζ1
dt
dV
dt

=
(mr −ml)

2t2

(t− 1)3(t+ 1)
.

Now for the larger root ζ2, we have

ζ2 =ml +
t− 1

V
= mr +

1

V

(
1− 1

t

)
,

where t is defined in (3.2). Since t > 1 (Lemma 3.7), one has ζ2 > mr (see also
Figure 5). From the first relation of (3.3) and using (3.5) one has

ρ =t exp

(
(mrt−ml)(t− 1)

(mr −ml)t

)
= t exp


(
mr
ml
t− 1

)
(t− 1)(

mr
ml
− 1
)
t

 = ρ(1/t),

where ρ(t) is defined in (3.2) as well. Observe that with (3.5),

ζ2 = mr +
mr −ml

t− 1
=
mrt−ml

t− 1
= ζ1(1/t),

where ζ1(t) is defined in (3.6). From Lemma 3.7, ρ(1/t) is strictly increasing for
t > 1, or equivalently for V > 0, and 1 < ρ(1/t) <∞ for 1 < t <∞. This shows the
one-to-one relations

ρ ∈ (1, ∞) ←→ V ∈ (0, ∞) ←→ t ∈ (1, ∞).

The second parts of both (i) and (ii) then follow from the properties of ρ(1/t) and
ζ1(1/t).

Also, we have dζ2/dt = dζ1(1/t)/dt = −(mr −ml)/(t− 1)2 and

dρ(1/t)

dV
=
mlt

(
mr
ml
t− 1

)
t− 1

exp


(
mr
ml
t− 1

)
(t− 1)(

mr
ml
− 1
)
t

 ,
dζ2

dV
= − (mr −ml)

2t2

(t− 1)3(t+ 1)
.
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Figure 6: Graphs in Subcase (c3) ρ(t) < ρ < ρ(1/t): roots in complex conjugate pair

To summarize, for h(z) = 0 to have a nonzero double real root, that is, λ2 = λ3 6= 0,

it is necessary that mr > ml and ρmr > ml.

(II) From Lemma 3.7, one has ρ(t) < ρ(1/t) for t > 1 or V > 0. For ρ and V in
the region given by the inequalities ρ(t) < ρ < ρ(1/t), the equation h(z) = 0 does not
have a real root. See Figure 6. So it has a pair of complex conjugate roots λ2 and λ̄2.

(III) It can be seen from Figure 7 that, if

ml

mr
< ρ < ρ(t),

then h(z) = 0 has two real roots, either both are negative or both are positive,
depending on whether V < 1

ml
− 1

mr
or V > 1

ml
− 1

mr
. The properties also follow from

the continuity of the roots of hl(z) = hr(z) corresponding to ρ and the results in (i)
and (ii) of Subcase (I) when ρ = ρ(t). Note that 0 cannot be a root of hl(z) = hr(z)
when ρ > ml

mr
.

Similarly, in the case that ρ > ρ(1/t), one can show that h(z) = 0 has two positive
real roots λ2, λ3 > mr. See also Figure 8.

For Case (c), the relations between ρ and V as well as the roots of h(z) = 0 are
plotted in Figure 9.
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Figure 7: Graphs in Subcase (c3) ml/mr < ρ < ρ(t): real roots with same sign
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Figure 8: Graphs in Subcase (c3) ρ > ρ(1/t): real roots λ2, λ3 > mr

4 Fluxes and current for n = 3 in terms of λj’s

In this section, we will provide formulas for the fluxes and the total current for
convenience of future study on dependences of these key quantities on the boundary
conditions, etc.

Recall that, under the electroneutrality boundary conditions, λ1 = 0 is always a
root of g(z) = 0. Let λ2 and λ3 be the other two roots of g(z) = 0 in the stripe

S0 = {z = x+ iy : y ∈ (−π/V, π/V )}.

As given at the end of Section 2, we have J = If , and from Theorem 2.1, f =
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Figure 9: Case (c) (mr > ml): relation between ρ and V and zeros of h(z)

(f1, f2, f3)T with

f1 =
1

z1

(z1 − λ2)(z1 − λ3)

(z1 − z2)(z1 − z3)
,

f2 =
1

z2

(z2 − λ2)(z2 − λ3)

(z2 − z1)(z2 − z3)
,

f3 =
1

z3

(z3 − λ2)(z3 − λ3)

(z3 − z1)(z3 − z2)
.

From Proposition 3.13 in [32], one has

• if λ2 6= 0 and λ3 6= 0, then

I =
1

H(1)λ2λ3
(Sl − Sr)Pz; (4.1)

• if 0 is a double eigenvalue and the third eigenvalue is λ 6= 0, then

I = − 1

H(1)λ

 3∑
j=1

lj − rj
zj

+ V Sl

Pz.

The second formula can be simplified as follows. Note that, when 0 is a dou-
ble eigenvalue, in addition to

∑3
j=1 zjlj =

∑3
j=1 zjrj = 0, one has ρmr = ml, or
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equivalently, Sl = Sr, and together, they imply that

Pz

3∑
j=1

lj − rj
zj

=z2z3(l1 − r1) + z1z3(l2 − r2) + z1z2(l3 − r3)

=(z1z2 + z1z3 + z2z3)(Sl − Sr)− z1(z2(l2 − r2) + z3(l3 − r3))

− z2(z1(l1 − r1) + z3(l3 − r3))− z3(z1(l1 − r1) + z2(l2 − r2))

=z2
1(l1 − r1) + z2

2(l2 − r2) + z2
3(l3 − r3) = Λl − Λr.

Therefore,

I = − 1

H(1)λ
(Λl − Λr + V SlPz) .

Furthermore, using h(λ) = 0 with Sl = Sr, one has

SlPz =
λ

eV λ − 1
Λr −

λeV λ

eV λ − 1
Λl,

which gives, from the previous formula,

I =
V

H(1)

(
(1− p(V λ))Λl + p(V λ)Λr

)
, (4.2)

where

p(x) =
ex − x− 1

x(ex − 1)
.

Since

p′(x) = −(ex − 1)2 − x2ex

x2(ex − 1)2
= −(ex + e−x − 2− x2)

ex

x2(ex − 1)2

and ex + e−x − 2− x2 ≥ 0 with the equality holding true only when x = 0, p(x) is a
strictly decreasing function. By defining

p(0) = lim
x→0

p(x) =
1

2
,

the function p(x) is continuous on (−∞,∞). Since p(x) is strictly decreasing and
p(−∞) = 1, p(∞) = 0, one has 0 < p(x) < 1 for any x.

One simple consequence of (4.2) is that I and V have the same sign and the value
of I lies between V Λr

H(1) and V Λl
H(1) .

Since limx→0 p(x) = 1/2, by taking the limit with λ → 0 in (4.2) we have the
formula for the case when 0 is a triple eigenvalue of D:

I =
V

2H(1)

(
Λl + Λr

)
.

A different form of representation for I is given as follows.

Proposition 4.1. Suppose the other two eigenvalues λ2 and λ3 are nonzero and
λ2 6= λ3. Then,

I =
V

H(1)

(
eV λ2−1
V λ2

− eV λ3−1
V λ3

eV λ2 − eV λ3
Λr +

eV λ2 e
V λ3−1
V λ3

− eV λ3 eV λ2−1
V λ2

eV λ2 − eV λ3
Λl

)
.
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Proof. Note that, for j = 2, 3,

eV λj =
Λrλj + SrPz
Λlλj + SlPz

.

Then, one has the identity

(Sl − Sr)Pz
V λ2λ3

=
eV λ2−1
V λ2

− eV λ3−1
V λ3

eV λ2 − eV λ3
Λr +

eV λ2 e
V λ3−1
V λ3

− eV λ3 eV λ2−1
V λ2

eV λ2 − eV λ3
Λl. (4.3)

The claimed formula then follows from (4.1).

Note that if we multiply the common denominator on both sides of (4.3), then
the resulting identity holds true for any two zeros of g(z), not necessarily those inside
the stripe S0.

Acknowledgment. LY was partially supported by National Natural Science Foun-
dation China # 12101112. WL was partially supported by Simons Foundation Math-
ematics and Physical Sciences-Collaboration Grants for Mathematicians 581822.

References

[1] N. Abaid, R. S. Eisenberg, and W. Liu, Asymptotic expansions of I-V relations
via a Poisson-Nernst-Planck system. SIAM J. Appl. Dyn. Syst. 7 (2008), 1507-
1526.

[2] V. Barcilon, D.-P. Chen, R. S. Eisenberg, and J. W. Jerome, Qualitative proper-
ties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation
study. SIAM J. Appl. Math. 57 (1997), 631-648.

[3] P. Bates, Z. Wen, and M. Zhang, Small permanent charge effects on individual
fluxes via Poisson-Nernst-Planck models with multiple cations. J. Nonl. Sci. 31
(2021), no. 3, Paper No. 55, 62 pp.

[4] M. Bazant, K. Chu, and B. Bayly, Current-Voltage relations for electrochemical
thin films. SIAM J. Appl. Math. 65 (2005), 1463-1484.

[5] F. Bezanilla, The voltage sensor in voltage-dependent ion channels. Phys. Rev.
80 (2000), 555-592.

[6] J. J. Bikerman, Structure and capacity of the electrical double layer. Philos.
Mag. 33 (1942), 384-397.

[7] D. P. Chen and R. S. Eisenberg, Charges, currents and potentials in ionic chan-
nels of one conformation. Biophys. J. 64 (1993), 1405-1421.

[8] R. S. Eisenberg, Ion channels as devices. J. Comp. Electro. 2 (2003), 245-249.

[9] R. S. Eisenberg, Proteins, channels, and crowded ions. Biophys. Chem. 100
(2003), 507-517.

21



[10] B. Eisenberg, Y. Hyon, and C. Liu, Energy variational analysis of ions in water
and channels: Field theory for primitive models of complex ionic fluids. J. Chem.
Phys. 133 (2010), 104104 (1-23).

[11] B. Eisenberg and W. Liu, Poisson-Nernst-Planck systems for ion channels with
permanent charges. SIAM J. Math. Anal. 38 (2007), 1932-1966.

[12] B. Eisenberg, W. Liu, and H. Xu, Reversal permanent charge and reversal po-
tential: Case studies via classical Poisson-Nernst-Planck models. Nonlinearity
28 (2015), 103-128.

[13] D. Gillespie, W. Nonner, and R. S. Eisenberg, Coupling Poisson-Nernst-Planck
and density functional theory to calculate ion flux. J. Phys.: Condens. Matter
14 (2002), 12129-12145.

[14] D. Gillespie, W. Nonner, and R. S. Eisenberg, Density functional theory of
charged, hard-sphere fluids. Phys. Rev. E 68 (2003), 0313503 (1-10).

[15] B. Hille, Ion Channels of Excitable Membranes. (3rd ed.) Sinauer Associates Inc.,
2001.

[16] A. L. Hodgkin, The ionic basis of electrical activity in nerve and muscle. Biol.
Rev. 26 (1951), 339-409.

[17] A. L. Hodgkin and A. F. Huxley, Currents carried by sodium and potassium
ions through the membrane of the giant axon of Loligo. J. Physol. 116 (1952),
449-472.

[18] A. L. Hodgkin, A. F. Huxley, and B. Katz, Ionic currents underlying activity in
the giant axon of the squid. Arch. Sci. Physiol. 3 (1949), 129-150.

[19] A. L. Hodgkin and B. Katz, The effect of sodium ions on the electrical activity
of the giant axon of the squid. J. Physiol. 108 (1949), 37-77.

[20] W. Huang, W. Liu, and Y. Yu, Permanent charge effects on ionic flow: A nu-
merical study of flux ratios and their bifurcation. Commun. Comput. Phys. 30
(2021), 486-514.

[21] Y. Hyon, B. Eisenberg, and C. Liu, A mathematical model for the hard sphere
repulsion in ionic solutions. Commun. Math. Sci. 9 (2010), 459-475.

[22] W. Im, D. Beglov, and B. Roux, Continuum solvation model: Electrostatic
forces from numerical solutions to the Poisson-Boltzmann equation. Comp. Phys.
Comm. 111 (1998), 59-75.

[23] S. Ji, B. Eisenberg, and W. Liu, Flux ratios and channel structures, J. Dynam.
Differential Equation 31 (2019), 1141-1183.

[24] S. Ji and W. Liu, Poisson-Nernst-Planck systems for ion flow with density func-
tional theory for hard-sphere potential: I-V relations and critical potentials. Part
I: Analysis. J. Dynam. Differential Equations 24 (2012), 955-983.

22



[25] S. Ji, W. Liu, and M. Zhang, Effects of (small) permanent charge and channel
geometry on ionic flows via classical Poisson-Nernst-Planck models, SIAM J.
Appl. Math. 75 (2015), 114-135.

[26] G. Lin, W. Liu, Y. Yi, and M. Zhang, Poisson-Nernst-Planck systems for ion
flow with a local hard-sphere potential for ion size effects. SIAM J. Appl. Dyn.
Syst. 12 (2013), 1613-1648.

[27] W. Liu, Geometric singular perturbation approach to steady-state Poisson-
Nernst-Planck systems. SIAM J. Appl. Math. 65 (2005), 754-766.

[28] W. Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion
channels with multiple ion species. J. Differential Equations 246 (2009), 428-
451.

[29] W. Liu, A flux ratio and a universal property of permanent charges effects on
fluxes. Comput. Math. Biophys. 6 (2018), 28-40.

[30] W. Liu, X. Tu, and M. Zhang, Poisson-Nernst-Planck systems for ion flow with
density functional theory for hard-sphere potential: I-V relations and critical
potentials. Part II: Numerics. J. Dynam. Differential Equations 24 (2012), 985-
1004.

[31] W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like
membrane channels. J. Dynam. Differential Equations 22 (2010), 413-437.

[32] W. Liu and H. Xu, A complete analysis of a classical Poisson-Nernst-Planck
model for ionic flow. J. Differential Equations 258 (2015), 1192-1228.

[33] H. Mofidi, B. Eisenberg, and W. Liu, Effects of diffusion coefficients and per-
manent charge on reversal potentials in ionic channels. Entropy 22 (2020),
325(1–23).

[34] H. Mofidi and W. Liu, Reversal potential and reversal permanent charge with
unequal diffusion coefficients via classical Poisson-Nernst-Planck models. SIAM
J. Appl. Math. 80 (2020), 1908-1935.

[35] W. Nonner and R. S. Eisenberg, Ion permeation and glutamate residues linked
by Poisson-Nernst-Planck theory in L-type Calcium channels. Biophysical J. 75
(1998), 1287-1305.

[36] Y. Rosenfeld, Free-energy model for the inhomogeneous hard-sphere fluid mix-
ture and Density-Functional Theory of freezing. Phys. Rev. Lett. 63 (1989), 980-
983.

[37] Y. Rosenfeld, Free energy model for the inhomogeneous fluid mixtures: Yukawa-
charged hard spheres, general interactions, and plasmas. J. Chem. Phys. 98
(1993), 8126-8148.

[38] I. Rubinstein, Multiple steady states in one-dimensional electrodiffusion with
local electroneutrality. SIAM J. Appl. Math. 47 (1987), 1076-1093.

23



[39] I. Rubinstein, Electro-Diffusion of Ions. SIAM Studies in Applied Mathematics,
SIAM, Philadelphia, PA, 1990.

[40] A. Singer and J. Norbury, A Poisson-Nernst-Planck model for biological ion
channels–an asymptotic analysis in a three-dimensional narrow funnel. SIAM J.
Appl. Math. 70 (2009), 949-968.

[41] A. Singer, D. Gillespie, J. Norbury, and R. S. Eisenberg, Singular perturbation
analysis of the steady-state Poisson-Nernst-Planck system: applications to ion
channels. Eur. J. Appl. Math. 19 (2008), 541-560.

[42] B. Sakmann and E. Neher, Single Channel Recording. (2nd ed.), Plenum, 1995.

[43] L. Sun and W. Liu, Non-localness of excess potentials and boundary value prob-
lems of Poisson-Nernst-Planck systems for ionic flow: A case study. J. Dynam.
Differential Equations 30 (2018), 779-797.

[44] N. Sun and W. Liu, Flux ratios for effects of permanent charges on ionic flows
with three ion species: New phenomena from a case study. J. Dynam. Differential
Equations (2022), https://doi.org/10.1007/s10884-021-10118-x.

[45] H. H. Ussing, Interpretation of the exchange of radio-sodium in isolated muscle.
Nature 160 (1947), 262-263.

[46] X.-S. Wang, D. He, J. Wylie, and H. Huang, Singular perturbation solutions
of steady-state Poisson-Nernst-Planck systems. Phys. Rev. E 89 (2014), 022722
(1-14).

[47] L. Zhang, B. Eisenberg, and W. Liu, An effect of large permanent charge: De-
creasing flux with increasing transmembrane potential. Eur. Phys. J. Special
Topics 227 (2019), 2575-2601.

[48] L. Zhang and W. Liu, Effects of large permanent charges on ionic flows via
Poisson-Nernst-Planck models. SIAM J. Appl. Dyn. Syst. 19 (2020), 1993-2029.

[49] M. Zhang, Asymptotic expansions and numerical simulations of I-V relations
via a steady-state Poisson-Nernst-Planck system. Rocky Mountain J. Math. 45
(2015), 1681-1708.

[50] Q. Zheng and G. W. Wei, Poisson-Boltzmann-Nernst-Planck model. J. Chem.
Phys. 134 (2011), 194101 (1-17).

24


