Poisson-Nernst-Planck systems for ion flow with a local hard-sphere potential for ion size effects

Guojian Lin, Weishi Liu, ${ }^{\dagger}$ Yingfei Yi ${ }^{\ddagger}$, and Mingji Zhang ${ }^{\S}$

Abstract

In this work, we analyze a one-dimensional steady-state Poisson-Nernst-Planck type model for ionic flow through a membrane channel with fixed boundary ion concentrations (charges) and electric potentials. We consider two ion species, one positively charged and one negatively charged, and assume zero permanent charge. A local hard-sphere potential that depends pointwise on ion concentrations is included in the model to account for ion size effects on the ionic flow. The model problem is treated as a boundary value problem of a singularly perturbed differential system. Our analysis is based on the geometric singular perturbation theory but, most importantly, on specific structures of this concrete model. The existence of solutions to the boundary value problem for small ion sizes is established and, treating the ion sizes as small parameters, we also derive an approximation of the I-V (current-voltage) relation and identify two critical potentials or voltages for ion size effects. Under electroneutrality (zero net charge) boundary conditions, each of these two critical potentials separates the potential into two regions over which the ion size effects are qualitatively opposite to each other. On the other hand, without electroneutrality boundary conditions, the qualitative effects of ion sizes will depend not only on the critical potentials but also on boundary concentrations. Important scaling laws of I-V relations and critical potentials in boundary concentrations are obtained. Similar results about ion size effects on the flow of matter are also discussed. Under electroneutrality boundary conditions, the results on the first order approximation in ion diameters of solutions, I-V relations and critical potentials agree with those with a nonlocal hard-sphere potential examined by Ji and Liu [J. Dynam. Differential Equations 24 (2012), 955-983].

Key Words. Ion channel, PNP, local hard-sphere potential, I-V relation, critical potentials, scaling laws
AMS subject classification. 34A26, 34B16, 34D15, 37D10, 92C35
Abbreviated title. PNP systems with local hard-sphere potential

[^0]
1 Introduction

In this work, we study the dynamics of ionic flow, the electrodiffusion of charges, through ion channels via a one-dimensional steady-state Poisson-Nernst-Planck (PNP) type system. The classical PNP includes only the ideal component of the electrochemical potential, and hence, treats ions essentially as point-charges. The PNP type model studied in this paper includes an additional component, a hard-sphere (HS) potential, to account for ion size effects (see $\S 2.2$ for details). We are particularly interested in ion size effects on the I-V relation.

PNP system is a basic macroscopic model for electrodiffusion of charges through ion channels ($[11,14,16,17,18,19,20,27,28,32,39,40,58,60,68,69,70]$, etc.). Under various reasonable conditions, it can be derived from the more fundamental models of the Langevin-Poisson system (see, for example, [2, 7, 8, 12, 28, 40, 56, 59, $68,69,74,79]$) and the Maxwell-Boltzmann equations (see, for example, [3, 39, 40, 68, $79]$), and from the energy variational analysis EnVarA ([21, 35, 36, 37, 38, 49, 50]).

The simplest PNP system is the classical Poisson-Nernst-Planck (cPNP) system. It has been simulated $([9,10,11,13,15,27,28,31,33,34,40,41,42,48,57,73,83,84])$ and analyzed $([1,4,5,22,25,51,52,55,61,71,72,75,76,77,78,82])$ to a great extent. As mentioned above, a major weak point of the cPNP is that it treats ions as pointcharges, which is reasonable only in near infinite dilute situation. Many extremely important properties of ion channels, such as selectivity, rely on ion sizes critically. For example, Na^{+}(sodium) and K^{+}(potassium), having the same valence (number of charges per particle), are mainly different by their ionic sizes. It is the difference in their ionic sizes that allows certain channels to prefer Na^{+}over K^{+}and some channels to prefer K^{+}over Na^{+}. In order to study the ion size effects on ionic flows, one has to take into consideration of ion specific components of the electrochemical potential in the PNP models. Including hard-sphere potentials of the excess electrochemical potential is a first step toward a better modeling and is necessary to account for ion size effects in the physiology of ion flows. There are two types of models for hardsphere potentials, local and nonlocal. Local models for hard-sphere potentials depend pointwise on ion concentrations, such as the model (2.6) used in this paper, while nonlocal models are proposed as functionals of ion concentrations (see, e.g., (5.9) in Appendix from which the local model (2.6) is derived). The PNP type models with ion sizes have been investigated computationally for ion channels and have shown great success ($[21,35,36,37,38,26,28,30,47,85]$, etc.). Existence and uniqueness of minimizers and saddle points of the free-energy equilibrium formulation with ionic interaction have been mathematically analyzed (see, for example, [23, 49, 50]).

In a recent paper ([43]), the authors provided an analytical treatment of a onedimensional version of PNP type system. They studied the case where two oppositely charged ions are involved with electroneutrality (zero net charge) boundary conditions, the permanent charge can be ignored and a nonlocal hard-sphere potential of the excess component is included in addition to the ideal component. They treated the model as a singularly perturbed system and rigorously established the existence and uniqueness results of the boundary value problem for small ion sizes. Treating ion sizes as small parameters, they derived an approximation of the I-V relation. Most importantly, the approximate I-V relation allows them to establish the following results.
(i) There is a critical potential or voltage V_{c} so that, if the boundary potential V satisfies $V>V_{c}$, then ion sizes enhance the current I in the sense that the contribution of ion sizes to the current I is positive; if $V<V_{c}$, then ion sizes reduce the current I.
(ii) There is another critical potential V^{c} so that, if $V>V^{c}$, then the current I increases in $\lambda=d_{2} / d_{1}$ where d_{1} and d_{2} are, respectively, the diameters of the positively and negatively charged ions; if $V<V^{c}$, then the current I decreases in λ.

In [54], among other things, the authors designed an algorithm for numerically detecting these critical potentials without using any analytical formulas for I-V relations. They demonstrated the effectiveness of this algorithm by conducting two numerical tasks. In the first one, the authors took the model problem with the same setting as in [43] for which analytical formulas for V_{c} and V^{c} are available. The authors numerically computed I-V relations and, applying the algorithm, computed the critical potentials V_{c} and V^{c}. They found that the computed values V_{c} and V^{c} agree well with the values obtained from the analytical formulas. For the second numerical task, the authors examined a PNP type model that includes also a nonzero permanent charge Q. For this case, no analytical formulas for the I-V relations and for the critical potentials are currently available. But the authors were able to numerically identify the critical potentials by applying their algorithm.

In this paper, we study a one-dimensional version of PNP type system with a local model for the hard-sphere (HS) potential. The problem has basically the same setting as that in [43] except that we take a local model for the hard-sphere potential and allow non-electroneutrality boundary conditions. One of earliest local models for hard-sphere potentials was proposed by Bikerman ([6]), which contains ion size effect of mixtures but is not ion specific (i.e., the hard-sphere potential is assumed to be the same for different ion species). Local models have evolved through several stages and become very reliable; for example, the Boublík-Mansoori-Carnahan-Starling-Leland local model is ion specific and has been shown to be accurate ([66, 67], etc.). It is clear that local models have the advantage of simplicity relative to nonlocal ones. In this paper, we take a local hard-sphere model derived from the nonlocal model used in [43] for two reasons: to provide a mathematical framework for the study of the problem with local hard-sphere models; to compare the results for the local hard-sphere model with those for the nonlocal hard-sphere model in [43].

Under electroneutrality boundary conditions, we will show that the local hardsphere model yields exactly the same results on the first order approximation (in the diameters of the ion species) I-V relation and the critical potentials V_{c} and V^{c} as those of the nonlocal hard-sphere model in [43]. This is perhaps well expected. To the contrary, in the absence of electroneutrality, it is rather surprising that the roles of critical potentials V_{c} and V^{c} on ion size effects are significantly different: the opposite effects of ion sizes separated by V_{c} and V^{c} described in (i) and (ii) above now depend on other quantities in terms of boundary concentrations (Theorems 4.5 and 4.6 and Proposition 4.8). Many important biological properties of ion channels are controlled through the boundary conditions. Our results provide a concrete situation for which the important I-V relations of ion channels can depend on boundary conditions sensitively. An observation based on the I-V relation also reveals the following
scaling laws (Theorem 4.14):
(a) the contribution I_{0} to the I-V relation from the ideal component scales linearly in boundary concentrations (that is, if one scales the boundary concentrations by a factor s, then I_{0} is scaled by s);
(b) the contribution (up to the leading order) to the I-V relation from the hardsphere component scales quadratically in boundary concentrations;
(c) both V_{c} and V^{c} scale invariantly in boundary concentrations.

Results on ion size effects to the flow of matter in Section 4.2 again indicate the richness of ion size effects on the electrodiffusion process.

The general framework for the analysis is the geometric singular perturbation theory-essentially the same as that for the nonlocal hard-sphere potential in [43]. A major difference is that the nonlocal hard-sphere potentials disappear in the limiting fast system but the local ones survive in this limit, and hence, more is involved in the treatment of the limiting fast dynamics for the local hard-sphere potential case. On the other hand, for the local hard-sphere potential case, we need not introduce an auxiliary problem as that for nonlocal case in [43]. A crucial ingredient for the success of our analysis is again the revealing of a set of integrals that allows us to handle the limiting fast dynamics with details as for the classical PNP cases.

The rest of this paper is organized as follows. In Section 2, we describe the onedimensional PNP-HS model for ion flows, a local model for hard-sphere potentials, and the setup of the boundary value problem of the singularly perturbed PNP-HS system. In Section 3, the existence and (local) uniqueness result for the boundary value problem is established in the framework of the geometric singular perturbation theory. Section 4 contains two parts. In Section 4.1, we derive an approximation of the I-V relation based on the analysis in Section 3, identify three critical potentials, and examine significant roles of two of the critical potentials for ion size effects on ionic flows. Important scaling laws of I-V relations and critical potentials in boundary concentrations are obtained. In Section 4.2, we discuss ion size effects on the flow of matter. This is presented briefly due to a simple relation between the flow rate of charge and the flow rate of matter. A derivation of the local hard-sphere potential used in the work from the exact one-dimensional nonlocal model used in [43] is provided in Section 5 (the appendix).

2 Problem Setup

2.1 A one-dimensional PNP type system

We assume the channel is narrow so that it can be effectively viewed as a onedimensional channel and normalize it as the interval $[0,1]$ that connects the interior and the exterior of the channel. A natural one-dimensional (time-evolution) PNP
type model for ion flows of n ion species is (see [53, 57])

$$
\begin{align*}
& \frac{1}{h(x)} \frac{\partial}{\partial x}\left(\varepsilon_{r}(x) \varepsilon_{0} h(x) \frac{\partial \Phi}{\partial x}\right)=-e\left(\sum_{j=1}^{n} z_{j} c_{j}+Q(x)\right) \tag{2.1}\\
& \frac{\partial c_{i}}{\partial t}+\frac{1}{h(x)} \frac{\partial \mathcal{J}_{i}}{\partial x}=0, \quad-\mathcal{J}_{i}=\frac{1}{k T} D_{i}(x) h(x) c_{i} \frac{\partial \mu_{i}}{\partial x}, \quad i=1,2, \cdots, n
\end{align*}
$$

where e is the elementary charge, k is the Boltzmann constant, T is the absolute temperature; Φ is the electric potential, $Q(x)$ is the permanent charge of the channel, $\varepsilon_{r}(x)$ is the relative dielectric coefficient, ε_{0} is the vacuum permittivity; $h(x)$ is the area of the cross-section of the channel over the point x; for the i th ion species, c_{i} is the concentration, z_{i} is the valence (the number of charges per particle), μ_{i} is the electrochemical potential, \mathcal{J}_{i} is the flux density, and $D_{i}(x)$ is the diffusion coefficient. The boundary conditions are, for $i=1,2, \cdots, n$,

$$
\begin{equation*}
\Phi(t, 0)=V, \quad c_{i}(t, 0)=L_{i}>0 ; \quad \Phi(t, 1)=0, \quad c_{i}(t, 1)=R_{i}>0 . \tag{2.2}
\end{equation*}
$$

For ion channels, an important characteristic is the so-called $I-V$ relation (currentvoltage relation). For a solution of the steady-state boundary value problem of (2.1) and (2.2), the rate of flow of charge through a cross-section or current \mathcal{I} is

$$
\begin{equation*}
\mathcal{I}=\sum_{j=1}^{n} z_{j} \mathcal{J}_{j} \tag{2.3}
\end{equation*}
$$

For fixed boundary concentrations L_{i} 's and R_{i} 's, \mathcal{J}_{j} 's depend on V only and formula (2.3) provides a relation of the current \mathcal{I} on the voltage V. This relation is the $I-V$ relation. We will also examine ion size effects on the flow rate of matter through a cross-section, \mathcal{T}, given by

$$
\begin{equation*}
\mathcal{T}=\sum_{j=1}^{n} \mathcal{J}_{j} \tag{2.4}
\end{equation*}
$$

2.2 Excess potential and a local hard sphere model

The electrochemical potential $\mu_{i}(x)$ for the i th ion species consists of the ideal component $\mu_{i}^{i d}(x)$, the excess component $\mu_{i}^{e x}(x)$ and the concentration-independent component $\mu_{i}^{0}(x)$ (e.g. a hard-well potential):

$$
\mu_{i}(x)=\mu_{i}^{0}(x)+\mu_{i}^{i d}(x)+\mu_{i}^{e x}(x)
$$

where

$$
\begin{equation*}
\mu_{i}^{i d}(x)=z_{i} e \Phi(x)+k T \ln \frac{c_{i}(x)}{c_{0}} \tag{2.5}
\end{equation*}
$$

with some characteristic number density c_{0}. The classical PNP system takes into consideration of the ideal component $\mu_{i}^{i d}(x)$ only. This component reflects the collision between ion particles and the water molecules. It has been accepted that the classical PNP system is a reasonable model in, for example, the dilute case under which the ion particles can be treated as point particles and the ion-to-ion interaction can be
more or less ignored. The excess chemical potential $\mu_{i}^{e x}(x)$ accounts for the finite size effect of charges (see, e.g., $[65,66]$).

In this paper, we will take the following local hard-sphere model for $\mu_{i}^{e x}(x)$

$$
\begin{equation*}
\frac{1}{k T} \mu_{i}^{L H S}(x)=-\ln \left(1-\sum_{j=1}^{n} d_{j} c_{j}(x)\right)+\frac{d_{i} \sum_{j=1}^{n} c_{j}(x)}{1-\sum_{j=1}^{n} d_{j} c_{j}(x)} \tag{2.6}
\end{equation*}
$$

where d_{j} is the diameter of the j th ion species. As mentioned in the introduction, this local model is an approximation of the well-known nonlocal model for hard-sphere (hard-rod) used in [43]. Its derivation is provided in Appendix (Section 5).

2.3 The steady-state boundary value problem and assumptions

The main goal of this paper is to examine the qualitative effect of ion sizes via the steady-state boundary value problem of (2.1) and (2.2) with the local hard-sphere (LHS) model (2.6) for the excess potential. We will examine the steady-state boundary value problem in Section 3. In Section 4, we will obtain approximations for (2.3) and (2.4) to study ion size effects on the I-V relation and on the flow rate \mathcal{T}.

For definiteness, we will take essentially the same setting as that in [43] but without assuming electroneutrality boundary conditions: $z_{1} L_{1}+z_{2} L_{2}=z_{1} R_{1}+z_{2} R_{2}=0$; that is,
(A1). We consider two ion species $(n=2)$ with $z_{1}>0$ and $z_{2}<0$.
(A2). The permanent charge is set to be zero: $Q(x)=0$.
(A3). For the electrochemical potential μ_{i}, in addition to the ideal component $\mu_{i}^{i d}$, we also include the local hard-sphere potential $\mu_{i}^{L H S}$ in (2.6).
(A4). The relative dielectric coefficient and the diffusion coefficient are constants, that is, $\varepsilon_{r}(x)=\varepsilon_{r}$ and $D_{i}(x)=D_{i}$.
In the sequel, we will assume (A1)-(A4). Under the assumptions (A1)-(A4), the steady-state system of (2.1) is

$$
\begin{align*}
& \frac{1}{h(x)} \frac{d}{d x}\left(\varepsilon_{r}(x) \varepsilon_{0} h(x) \frac{d \Phi}{d x}\right)=-e\left(z_{1} c_{1}+z_{2} c_{2}\right) \tag{2.7}\\
& \frac{d \mathcal{J}_{i}}{d x}=0, \quad-\mathcal{J}_{i}=\frac{1}{k T} D_{i}(x) h(x) c_{i} \frac{d \mu_{i}}{d x}, \quad i=1,2
\end{align*}
$$

We now make the dimensionless re-scaling in (2.7),

$$
\phi=\frac{e}{k T} \Phi, \quad \bar{V}=\frac{e}{k T} V, \quad \varepsilon^{2}=\frac{\varepsilon_{r} \varepsilon_{0} k T}{e^{2}}, \quad J_{i}=\frac{\mathcal{J}_{i}}{D_{i}} .
$$

Using the expression (2.5) for the ideal component $\mu_{i}^{i d}(x)$, we have, for $i=1,2$,

$$
\begin{aligned}
-J_{i} & =-\frac{\mathcal{J}_{i}}{D_{i}}=\frac{1}{k T} h(x) c_{i} \frac{d \mu_{i}^{i d}}{d x}+\frac{1}{k T} h(x) c_{i} \frac{d \mu_{i}^{L H S}}{d x} \\
& =\frac{e}{k T} z_{i} h(x) c_{i} \frac{d \Phi}{d x}+h(x) \frac{d c_{i}}{d x}+\frac{h(x) c_{i}}{k T} \frac{d \mu_{i}^{L H S}}{d x} \\
& =z_{i} h(x) c_{i} \frac{d \phi}{d x}+h(x) \frac{d c_{i}}{d x}+\frac{h(x) c_{i}}{k T} \frac{d \mu_{i}^{L H S}}{d x} .
\end{aligned}
$$

Note also that,

$$
\varepsilon_{r} \varepsilon_{0} \frac{d \Phi}{d x}=\varepsilon^{2} \frac{e^{2}}{k T} \frac{d \Phi}{d x}=\varepsilon^{2} \frac{e^{2}}{k T} \frac{k T}{e} \frac{d \phi}{d x}=\varepsilon^{2} e \frac{d \phi}{d x} .
$$

Therefore, the boundary value problem (2.7) and (2.2) becomes

$$
\begin{align*}
& \frac{\varepsilon^{2}}{h(x)} \frac{d}{d x}\left(h(x) \frac{d}{d x} \phi\right)=-z_{1} c_{1}-z_{2} c_{2}, \frac{d J_{1}}{d x}=\frac{d J_{2}}{d x}=0, \\
& h(x) \frac{d c_{1}}{d x}+z_{1} h(x) c_{1} \frac{d \phi}{d x}+\frac{h(x) c_{1}}{k T} \frac{d}{d x} \mu_{1}^{L H S}(x)=-J_{1}, \tag{2.8}\\
& h(x) \frac{d c_{2}}{d x}+z_{2} h(x) c_{2} \frac{d \phi}{d x}+\frac{h(x) c_{2}}{k T} \frac{d}{d x} \mu_{2}^{L H S}(x)=-J_{2},
\end{align*}
$$

with the boundary conditions, for $i=1,2$,

$$
\begin{equation*}
\phi(0)=\bar{V}, c_{i}(0)=L_{i}>0 ; \quad \phi(1)=0, c_{i}(1)=R_{i}>0 . \tag{2.9}
\end{equation*}
$$

It follows directly from (2.6) for the local hard-sphere potential $\mu_{i}^{L H S}$ that

$$
\begin{align*}
& \frac{1}{k T} \frac{d}{d x} \mu_{1}^{L H S}=\frac{d_{1}\left(2+d_{1}\left(c_{2}-c_{1}\right)-2 d_{2} c_{2}\right)}{\left(1-d_{1} c_{1}-d_{2} c_{2}\right)^{2}} \frac{d c_{1}}{d x}+\frac{d_{1}+d_{2}-d_{1}^{2} c_{1}-d_{2}^{2} c_{2}}{\left(1-d_{1} c_{1}-d_{2} c_{2}\right)^{2}} \frac{d c_{2}}{d x}, \tag{2.10}\\
& \frac{1}{k T} \frac{d}{d x} \mu_{2}^{L H S}=\frac{d_{1}+d_{2}-d_{1}^{2} c_{1}-d_{2}^{2} c_{2}}{\left(1-d_{1} c_{1}-d_{2} c_{2}\right)^{2}} \frac{d c_{1}}{d x}+\frac{d_{2}\left(2+d_{2}\left(c_{1}-c_{2}\right)-2 d_{1} c_{1}\right)}{\left(1-d_{1} c_{1}-d_{2} c_{2}\right)^{2}} \frac{d c_{2}}{d x} .
\end{align*}
$$

Substituting (2.10) into system (2.8), we obtain

$$
\begin{align*}
& \frac{\varepsilon^{2}}{h(x)} \frac{d}{d x}\left(h(x) \frac{d}{d x} \phi\right)=-z_{1} c_{1}-z_{2} c_{2}, \quad \frac{d J_{1}}{d x}=\frac{d J_{2}}{d x}=0, \\
& \frac{d c_{1}}{d x}=-f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) \frac{d \phi}{d x}-\frac{1}{h(x)} g_{1}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right), \tag{2.11}\\
& \frac{d c_{2}}{d x}=f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) \frac{d \phi}{d x}-\frac{1}{h(x)} g_{2}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right)
\end{align*}
$$

where

$$
\begin{align*}
f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)= & z_{1} c_{1}-\left(d_{1}+d_{2}-d_{1}^{2} c_{1}-d_{2}^{2} c_{2}\right)\left(z_{1} c_{1}+z_{2} c_{2}\right) c_{1} \\
& -z_{1}\left(d_{1}-d_{2}\right) c_{1}^{2}, \\
f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)=- & z_{2} c_{2}+\left(d_{1}+d_{2}-d_{1}^{2} c_{1}-d_{2}^{2} c_{2}\right)\left(z_{1} c_{1}+z_{2} c_{2}\right) c_{2} \\
& \quad+z_{2}\left(d_{2}-d_{1}\right) c_{2}^{2}, \\
g_{1}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right)= & \left(\left(1-d_{1} c_{1}\right)^{2}+d_{2}^{2} c_{1} c_{2}\right) J_{1} \tag{2.12}\\
& \quad-c_{1}\left(d_{1}+d_{2}-d_{1}^{2} c_{1}-d_{2}^{2} c_{2}\right) J_{2}, \\
g_{2}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right)= & \left(\left(1-d_{2} c_{2}\right)^{2}+d_{1}^{2} c_{1} c_{2}\right) J_{2} \\
& -c_{2}\left(d_{1}+d_{2}-d_{1}^{2} c_{1}-d_{2}^{2} c_{2}\right) J_{1} .
\end{align*}
$$

Recall the boundary conditions are

$$
\begin{equation*}
\phi(0)=\bar{V}, c_{i}(0)=L_{i}>0 ; \phi(1)=0, c_{i}(1)=R_{i}>0 . \tag{2.13}
\end{equation*}
$$

3 Geometric singular perturbation theory for (2.11)-(2.13)

We will rewrite system (2.11) into a standard form for singularly perturbed systems and convert the boundary value problem (2.11) and (2.13) to a connecting problem.

Denote the derivative with respect to x by overdot and introduce $u=\varepsilon \dot{\phi}$ and $\tau=x$. System (2.11) becomes

$$
\begin{align*}
\varepsilon \dot{\phi} & =u, \quad \varepsilon \dot{u}=-z_{1} c_{1}-z_{2} c_{2}-\varepsilon \frac{h_{\tau}(\tau)}{h(\tau)} u \\
\varepsilon \dot{c}_{1} & =-f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) u-\frac{\varepsilon}{h(\tau)} g_{1}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right), \tag{3.1}\\
\varepsilon \dot{c}_{2} & =f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) u-\frac{\varepsilon}{h(\tau)} g_{2}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right) \\
\dot{J}_{1} & =\dot{J}_{2}=0, \quad \dot{\tau}=1
\end{align*}
$$

System (3.1) will be treated as a singularly perturbed system with ε as the singular parameter. Its phase space is \mathbb{R}^{7} with state variables $\left(\phi, u, c_{1}, c_{2}, J_{1}, J_{2}, \tau\right)$. We have included constants J_{1} and J_{2} in the phase space. A reason for this is explained in the paragraph below that of display (3.3).

For $\varepsilon>0$, the rescaling $x=\varepsilon \xi$ of the independent variable x gives rise to

$$
\begin{align*}
& \phi^{\prime}=u, \quad u^{\prime}=-z_{1} c_{1}-z_{2} c_{2}-\varepsilon \frac{h_{\tau}(\tau)}{h(\tau)} u, \\
& c_{1}^{\prime}=-f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) u-\frac{\varepsilon}{h(\tau)} g_{1}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right), \tag{3.2}\\
& c_{2}^{\prime}=f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) u-\frac{\varepsilon}{h(\tau)} g_{2}\left(c_{1}, c_{2}, J_{1}, J_{2} ; d_{1}, d_{2}\right), \\
& J_{1}^{\prime}=J_{2}^{\prime}=0, \quad \tau^{\prime}=\varepsilon
\end{align*}
$$

where prime denotes the derivative with respect to the variable ξ.
For $\varepsilon>0$, systems (3.1) and (3.2) have exactly the same phase portrait. But their limiting systems at $\varepsilon=0$ are different. The limiting system of (3.1) is called the limiting slow system, whose orbits are called slow orbits or regular layers. The limiting system of (3.2) is the limiting fast system, whose orbits are called fast orbits or singular (boundary and/or internal) layers. By a singular orbit of system (3.1) or (3.2), we mean a continuous and piecewise smooth curve in \mathbb{R}^{7} that is a union of finitely many slow and fast orbits. Very often, limiting slow and fast systems provide complementary information on state variables. Therefore, the main task of singularly perturbed problems is to patch the limiting information together to form a solution for the entire $\varepsilon>0$ system.

Let B_{L} and B_{R} be the subsets of the phase space \mathbb{R}^{7} defined by

$$
\begin{align*}
B_{L} & =\left\{\left(\bar{V}, u, L_{1}, L_{2}, J_{1}, J_{2}, 0\right) \in \mathbb{R}^{7}: \text { arbitrary } u, J_{1}, J_{2}\right\}, \\
B_{R} & =\left\{\left(0, u, R_{1}, R_{2}, J_{1}, J_{2}, 1\right) \in \mathbb{R}^{7}: \text { arbitrary } u, J_{1}, J_{2}\right\}, \tag{3.3}
\end{align*}
$$

where $\bar{V}, L_{1}, L_{2}, R_{1}$ and R_{2} are given in (2.13). Then the original boundary value problem is equivalent to a connecting problem, namely, finding a solution of (3.1) or (3.2) from B_{L} to B_{R} (see, for example, [44]).

For $\varepsilon>0$ small, let $M_{L}(\varepsilon)$ be the collection of forward orbits from B_{L} under the flow and let $M_{R}(\varepsilon)$ be that of backward orbits from B_{R}. Since the flow is not tangent to B_{L} and B_{R} and $\operatorname{dim} B_{L}=\operatorname{dim} B_{R}=3$, we have $\operatorname{dim} M_{L}(\varepsilon)=$ $\operatorname{dim} M_{R}(\varepsilon)=4$. We will show that $M_{L}(\varepsilon)$ and $M_{R}(\varepsilon)$ intersect transversally in the phase space \mathbb{R}^{7}. Transversality of the intersection implies $\operatorname{dim}\left(M_{L}(\varepsilon) \cap M_{R}(\varepsilon)\right)=$ $\operatorname{dim} M_{L}(\varepsilon)+\operatorname{dim} M_{R}(\varepsilon)-\operatorname{dim} \mathbb{R}^{7}$. It then follows that $\operatorname{dim}\left(M_{L}(\varepsilon) \cap M_{R}(\varepsilon)\right)=1$ which would allow us to conclude the existence and (local) uniqueness of a solution for the connecting problem. This is the reason that we include J_{1} and J_{2} in the phase space. Alternatively, one can treat J_{1} and J_{2} as parameters and work in the phase space \mathbb{R}^{5}. Then the corresponding B_{L} and B_{R} would each be of dimension one, and hence, $M_{L}(\varepsilon)$ and $M_{R}(\varepsilon)$ would each be of dimension two. Should $M_{L}(\varepsilon)$ and $M_{R}(\varepsilon)$ intersect, the intersection cannot be transversal due to the dimension counting. To establish the existence and uniqueness result with this alternative approach, one would have to apply perturbation argument with J_{1} and J_{2} as perturbation parameters.

In what follows, we will consider the equivalent connecting problem for system (3.1) or (3.2) and construct its solution from B_{L} to B_{R}. The construction process involves two main steps: the first step is to construct a singular orbit to the connecting problem, and the second step is to apply geometric singular perturbation theory to show that there is a unique solution near the singular orbit for small $\varepsilon>0$.

3.1 Geometric construction of singular orbits

Following the idea in $[22,51,52]$, we will first construct a singular orbit on $[0,1]$ that connects B_{L} to B_{R}. Such an orbit will generally consist of two boundary layers and a regular layer.

3.1.1 Limiting fast dynamics and boundary layers

By setting $\varepsilon=0$ in (3.1), we obtain the so-called slow manifold

$$
\begin{equation*}
\mathcal{Z}=\left\{u=0, z_{1} c_{1}+z_{2} c_{2}=0\right\} . \tag{3.4}
\end{equation*}
$$

By setting $\varepsilon=0$ in (3.2), we get the limiting fast system

$$
\begin{align*}
& \phi^{\prime}=u, \quad u^{\prime}=-z_{1} c_{1}-z_{2} c_{2}, \\
& c_{1}^{\prime}=-f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) u, \\
& c_{2}^{\prime}=f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right) u, \tag{3.5}\\
& J_{1}^{\prime}=J_{2}^{\prime}=0, \quad \tau^{\prime}=0 .
\end{align*}
$$

Note that the slow manifold \mathcal{Z} is the set of equilibria of (3.5).
Lemma 3.1. For system (3.5), the slow manifold \mathcal{Z} is normally hyperbolic.
Proof. The slow manifold \mathcal{Z} is precisely the set of equilibria of (3.5). The linearization of (3.5) at each point of $\left(\phi, 0, c_{1}, c_{2}, J_{1}, J_{2}, \tau\right) \in \mathcal{Z}$ has five zero eigenvalues whose generalized eigenspace is the tangent space of the five-dimensional slow manifold \mathcal{Z} of equilibria, and the other two eigenvalues are $\pm \sqrt{z_{1} f_{1}-z_{2} f_{2}}$. On the slow manifold \mathcal{Z} where $z_{1} c_{1}+z_{2} c_{2}=0$, one has, from (2.12),

$$
z_{1} f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)-z_{2} f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)=z_{1}^{2} c_{1}+z_{2}^{2} c_{2} .
$$

Note that $f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)$ has a factor c_{1} and $f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)$ has a factor c_{2}. It follows from $\left(c_{1}, c_{2}\right)$-subsystem of (3.5) that $\left\{c_{1}>0\right\}$ and $\left\{c_{2}>0\right\}$ are invariant under (3.5). Since c_{1} and c_{2} have positive boundary values, c_{1} and c_{2} are positive for all $x \in[0,1]$. Therefore, $z_{1} f_{1}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)-z_{2} f_{2}\left(c_{1}, c_{2} ; d_{1}, d_{2}\right)>0$. Thus \mathcal{Z} is normally hyperbolic.

We denote the stable (resp. unstable) manifold of \mathcal{Z} by $W^{s}(\mathcal{Z})$ (resp. $W^{u}(\mathcal{Z})$). Let M_{L} be the collection of orbits from B_{L} in forward time under the flow of system (3.5) and M_{R} be the collection of orbits from B_{R} in backward time under the flow of system (3.5). Then, for a singular orbit connecting B_{L} to B_{R}, the boundary layer at $\tau=x=0$ must lie in $N_{L}=M_{L} \cap W^{s}(\mathcal{Z})$ and the boundary layer at $\tau=x=1$ must lie in $N_{R}=M_{R} \cap W^{u}(\mathcal{Z})$. In this subsection, we will determine the boundary layers N_{L} and N_{R}, and their landing points $\omega\left(N_{L}\right)$ and $\alpha\left(N_{R}\right)$ on the slow manifold \mathcal{Z}. The regular layer, determined by the limiting slow system in §3.1.2, will lie in \mathcal{Z} and connect the landing points $\omega\left(N_{L}\right)$ at $\tau=0$ and $\alpha\left(N_{R}\right)$ at $\tau=1$. A singular orbit $\Gamma^{0} \cup \Lambda \cup \Gamma^{1}$ is illustrated in Figure 1 where $\Gamma^{0} \subset N_{L}$ is a boundary layer at $\tau=0$ and $\Gamma^{1} \subset N_{R}$ is a boundary layer at $\tau=1$, and Λ is a regular layer connecting the landing points of Γ^{0} and Γ^{1} on the slow manifold \mathcal{Z} to be constructed in Section 3.1.2. We remark that the boundary layers $\Gamma^{0} \subset N_{L}$ and $\Gamma^{1} \subset N_{R}$ cannot be uniquely determined untill the construction of Λ.

Figure 1: A singular orbit $\Gamma^{0} \cup \Lambda \cup \Gamma^{1}$ on $[0,1]$: a boundary layer Γ^{0} at $\tau=0$, a regular layer Λ on \mathcal{Z} from $\tau=0$ to $\tau=1$, and a boundary layer Γ^{1} at $\tau=1$.

Recall that d_{1} and d_{2} are the diameters of the two ion species. For small $d_{1}>0$ and $d_{2}>0$, we treat (3.5) as a regular perturbation of that with $d_{1}=d_{2}=0$. While
d_{1} and d_{2} are small, their ratio is of order $O(1)$. We thus set

$$
\begin{equation*}
d_{1}=d \text { and } d_{2}=\lambda d \tag{3.6}
\end{equation*}
$$

and look for solutions

$$
\Gamma(\xi ; d)=\left(\phi(\xi ; d), u(\xi ; d), c_{1}(\xi ; d), c_{2}(\xi ; d), J_{1}(d), J_{2}(d), \tau\right)
$$

of system (3.5) of the form

$$
\begin{align*}
\phi(\xi ; d) & =\phi_{0}(\xi)+\phi_{1}(\xi) d+o(d), \quad u(\xi ; d)=u_{0}(\xi)+u_{1}(\xi) d+o(d), \\
c_{1}(\xi ; d) & =c_{10}(\xi)+c_{11}(\xi) d+o(d), \quad c_{2}(\xi)=c_{20}(\xi)+c_{21}(\xi) d+o(d), \tag{3.7}\\
J_{1}(d) & =J_{10}+J_{11} d+o(d), \quad J_{2}(d)=J_{20}+J_{21} d+o(d) .
\end{align*}
$$

Substituting (3.7) into system (3.5), we obtain, for the zeroth order in d,

$$
\begin{align*}
\phi_{0}^{\prime} & =u_{0}, \quad u_{0}^{\prime}=-z_{1} c_{10}-z_{2} c_{20}, \\
c_{10}^{\prime} & =-z_{1} c_{10} u_{0}, \quad c_{20}^{\prime}=-z_{2} c_{20} u_{0}, \tag{3.8}\\
J_{10}^{\prime} & =J_{20}^{\prime}=0, \quad \tau^{\prime}=0,
\end{align*}
$$

and, for the first order in d,

$$
\begin{align*}
\phi_{1}^{\prime} & =u_{1}, \quad u_{1}^{\prime}=-z_{1} c_{11}-z_{2} c_{21} \\
c_{11}^{\prime} & =-z_{1} u_{0} c_{11}-z_{1} c_{10} u_{1}+u_{0}\left((\lambda+1) z_{2} c_{10} c_{20}+2 z_{1} c_{10}^{2}\right) \\
c_{21}^{\prime} & =-z_{2} u_{0} c_{21}-z_{2} c_{20} u_{1}+u_{0}\left((\lambda+1) z_{1} c_{10} c_{20}+2 \lambda z_{2} c_{20}^{2}\right), \tag{3.9}\\
J_{11}^{\prime} & =J_{21}^{\prime}=0, \quad \tau^{\prime}=0
\end{align*}
$$

Recall that we are interested in the solutions $\Gamma^{0}(\xi ; d) \subset N_{L}=M_{L} \cap W^{s}(\mathcal{Z})$ with $\Gamma^{0}(0 ; d) \in B_{L}$ and $\Gamma^{1}(\xi ; d) \subset N_{R}=M_{R} \cap W^{u}(\mathcal{Z})$ with $\Gamma^{1}(0 ; d) \in B_{R}$.

Proposition 3.2. Assume that $d \geq 0$ is small.
(i) The stable manifold $W^{s}(\mathcal{Z})$ intersects B_{L} transversally at points

$$
\left(\bar{V}, u_{0}^{l}+u_{1}^{l} d+o(d), L_{1}, L_{2}, J_{1}(d), J_{2}(d), 0\right)
$$

and the ω-limit set of $N_{L}=M_{L} \bigcap W^{s}(\mathcal{Z})$ is
$\omega\left(N_{L}\right)=\left\{\left(\phi_{0}^{L}+\phi_{1}^{L} d+o(d), 0, c_{10}^{L}+c_{11}^{L} d+o(d), c_{20}^{L}+c_{21}^{L} d+o(d), J_{1}(d), J_{2}(d), 0\right)\right\}$, where $J_{i}(d)=J_{i 0}+J_{i 1} d+o(d), i=1,2$, can be arbitrary and

$$
\begin{aligned}
\phi_{0}^{L} & =\bar{V}-\frac{1}{z_{1}-z_{2}} \ln \frac{-z_{2} L_{2}}{z_{1} L_{1}}, \quad z_{1} c_{10}^{L}=-z_{2} c_{20}^{L}=\left(z_{1} L_{1}\right)^{\frac{-z_{2}}{z_{1}-z_{2}}}\left(-z_{2} L_{2}\right)^{\frac{z_{1}}{z_{1}-z_{2}}} \\
u_{0}^{l} & \left.=\operatorname{sgn}\left(z_{1} L_{1}+z_{2} L_{2}\right) \sqrt{2\left(L_{1}+L_{2}+\frac{z_{1}-z_{2}}{z_{1} z_{2}}\left(z_{1} L_{1}\right)^{\frac{-z_{2}}{z_{1}-z_{2}}}\left(-z_{2} L_{2}\right)^{\frac{z_{1}}{z_{1}-z_{2}}}\right.}\right) \\
\phi_{1}^{L} & =\frac{1-\lambda}{z_{1}-z_{2}}\left(L_{1}+L_{2}-c_{10}^{L}-c_{20}^{L}\right), \\
z_{1} c_{11}^{L} & =-z_{2} c_{21}^{L}=z_{1} c_{10}^{L}\left(L_{1}+\lambda L_{2}+\frac{\lambda z_{1}-z_{2}}{z_{1}-z_{2}}\left(L_{1}+L_{2}\right)+\frac{2\left(\lambda z_{1}-z_{2}\right)}{z_{2}} c_{10}^{L}\right), \\
u_{1}^{l} & =\frac{\left(L_{1}+L_{2}\right)\left(L_{1}+\lambda L_{2}\right)-\left(c_{10}^{L}+c_{20}^{L}\right)\left(c_{10}^{L}+\lambda c_{20}^{L}\right)-c_{11}^{L}-c_{21}^{L}}{u_{0}^{l}} .
\end{aligned}
$$

(ii) The unstable manifold $W^{u}(\mathcal{Z})$ intersects B_{R} transversally at points

$$
\left(0, u_{0}^{r}+u_{1}^{r} d+o(d), R_{1}, R_{2}, J_{1}(d), J_{2}(d), 1\right)
$$

and the α-limit set of N_{R} is

$$
\alpha\left(N_{R}\right)=\left\{\left(\phi_{0}^{R}+\phi_{1}^{R} d+o(d), 0, c_{10}^{R}+c_{11}^{R} d+o(d), c_{20}^{R}+c_{21}^{R} d+o(d), J_{1}(d), J_{2}(d), 1\right)\right\},
$$

where $J_{i}(d)=J_{i 0}+J_{i 1} d+o(d), i=1,2$, can be arbitrary and

$$
\begin{aligned}
\phi_{0}^{R} & =-\frac{1}{z_{1}-z_{2}} \ln \frac{-z_{2} R_{2}}{z_{1} R_{1}}, \quad z_{1} c_{10}^{R}=-z_{2} c_{20}^{R}=\left(z_{1} R_{1}\right)^{\frac{-z_{2}}{z_{1}-z_{2}}}\left(-z_{2} R_{2}\right)^{\frac{z_{1}}{z_{1}-z_{2}}}, \\
u_{0}^{r} & =-\operatorname{sgn}\left(z_{1} R_{1}+z_{2} R_{2}\right) \sqrt{2\left(R_{1}+R_{2}+\frac{z_{1}-z_{2}}{z_{1} z_{2}}\left(z_{1} R_{1}\right)^{\frac{-z_{2}}{z_{1}-z_{2}}}\left(-z_{2} R_{2}\right)^{\frac{z_{1}}{z_{1}-z_{2}}}\right.} ; \\
\phi_{1}^{R} & =\frac{1-\lambda}{z_{1}-z_{2}}\left(R_{1}+R_{2}-c_{10}^{R}-c_{20}^{R}\right), \\
z_{1} c_{11}^{R} & =-z_{2} c_{21}^{R}=z_{1} c_{10}^{R}\left(R_{1}+\lambda R_{2}+\frac{\lambda z_{1}-z_{2}}{z_{1}-z_{2}}\left(R_{1}+R_{2}\right)+\frac{2\left(\lambda z_{1}-z_{2}\right)}{z_{2}} c_{10}^{R}\right), \\
u_{1}^{r} & =\frac{\left(R_{1}+R_{2}\right)\left(R_{1}+\lambda R_{2}\right)-\left(c_{10}^{R}+c_{20}^{R}\right)\left(c_{10}^{R}+\lambda c_{20}^{R}\right)-c_{11}^{R}-c_{21}^{R}}{u_{0}^{r}} .
\end{aligned}
$$

Remark 3.3. When $z_{1} L_{1}+z_{2} L_{2}=0, u_{0}^{l}=0$. In this case, u_{1}^{l} is defined as the limit of its expression as $z_{1} L_{1}+z_{2} L_{2} \rightarrow 0$ and it is zero. Similar remark applies to u_{1}^{r} when $z_{1} R_{1}+z_{2} R_{2}=0$.

Proof. The stated result for system (3.8) has been obtained in [22, 51, 52]. For system (3.9), one can check that it has three nontrivial first integrals:

$$
\begin{aligned}
& F_{1}=z_{1} \phi_{1}+\frac{c_{11}}{c_{10}}+2 c_{10}+(\lambda+1) c_{20} \\
& F_{2}=z_{2} \phi_{1}+\frac{c_{21}}{c_{20}}+2 \lambda c_{20}+(\lambda+1) c_{10} \\
& F_{3}=u_{0} u_{1}-c_{11}-c_{21}-(\lambda+1) c_{10} c_{20}-c_{10}^{2}-\lambda c_{20}^{2}
\end{aligned}
$$

We now establish the results for $\phi_{1}^{L}, c_{11}^{L}, c_{21}^{L}$ and u_{1}^{l} for system (3.9). Those for $\phi_{1}^{R}, c_{11}^{R}, c_{21}^{R}$ and u_{1}^{r} can be established in the similar way.

We note that $\phi_{1}(0)=c_{11}(0)=c_{21}(0)=0$. Using the integrals F_{1} and F_{2}, we have

$$
\begin{aligned}
& z_{1} \phi_{1}+\frac{c_{11}}{c_{10}}+2 c_{10}+(\lambda+1) c_{20}=2 L_{1}+(\lambda+1) L_{2}, \\
& z_{2} \phi_{1}+\frac{c_{21}}{c_{20}}+2 \lambda c_{10}+(\lambda+1) c_{10}=2 \lambda L_{2}+(\lambda+1) L_{1} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& c_{11}=c_{10}\left(2 L_{1}+(\lambda+1) L_{2}-2 c_{10}-(\lambda+1) c_{20}-z_{1} \phi_{1}\right), \\
& c_{21}=c_{20}\left(2 \lambda L_{2}+(\lambda+1) L_{1}-2 \lambda c_{20}-(\lambda+1) c_{10}-z_{2} \phi_{1}\right) .
\end{aligned}
$$

Taking the limit as $\xi \rightarrow \infty$, we have

$$
\begin{aligned}
& \phi_{1}^{L}=\frac{1-\lambda}{z_{1}-z_{2}}\left(L_{1}+L_{2}-c_{10}^{L}-c_{20}^{L}\right), \\
& c_{11}^{L}=c_{10}^{L}\left(2 L_{1}+(\lambda+1) L_{2}-2 c_{10}^{L}-(\lambda+1) c_{20}^{L}-z_{1} \phi_{1}^{L}\right), \\
& c_{21}^{L}=c_{20}^{L}\left(2 \lambda L_{2}+(\lambda+1) L_{1}-2 \lambda c_{20}^{L}-(\lambda+1) c_{10}^{L}-z_{2} \phi_{1}^{L}\right) .
\end{aligned}
$$

In view of the relations $z_{1} c_{10}^{L}+z_{2} c_{20}^{L}=z_{1} c_{11}^{L}+z_{2} c_{21}^{L}=0$, one can get the formulas for c_{11}^{L}, c_{21}^{L} and ϕ_{1}^{L}. We now derive the formula for $u_{1}^{l}=u_{1}(0)$.

In view of $F_{3}(0)=F_{3}(\infty)$, we have

$$
u_{0}^{l} u_{1}^{l}-(\lambda+1) L_{1} L_{2}-L_{1}^{2}-\lambda L_{2}^{2}=-c_{11}^{L}-c_{21}^{L}-(\lambda+1) c_{10}^{L} c_{20}^{L}-\left(c_{10}^{L}\right)^{2}-\lambda\left(c_{20}^{L}\right)^{2} .
$$

The formula for u_{1}^{l} follows directly.
For later use, let Γ^{0} denote the potential boundary layer at $x=0$ for system (3.5) and Let Γ^{1} denote the potential boundary layer at $x=1$ for system (3.5).

Corollary 3.4. Under electroneutrality boundary conditions, that is, $z_{1} L_{1}=-z_{2} L_{2}=$ L and $z_{1} R_{1}=-z_{2} R_{2}=R$,

$$
\begin{gathered}
\phi_{0}^{L}=\bar{V}, z_{1} c_{10}^{L}=-z_{2} c_{20}^{L}=L ; \phi_{0}^{R}=0, z_{1} c_{10}^{R}=-z_{2} c_{20}^{R}=R, \\
\phi_{1}^{L}=c_{11}^{L}=c_{21}^{L}=\phi_{1}^{R}=c_{11}^{R}=c_{21}^{R}=0 .
\end{gathered}
$$

In particular, up to $O(d)$, there is no boundary layer at $x=0$ and $x=1$.

3.1.2 Limiting slow dynamics and regular layer

Next we construct the regular layer on \mathcal{Z} that connects $\omega\left(N_{L}\right)$ and $\alpha\left(N_{R}\right)$. Note that, for $\varepsilon=0$, system (3.1) loses most information. To remedy this degeneracy, we follow the idea in $[22,51,52]$ and make a rescaling $u=\varepsilon p$ and $-z_{2} c_{2}=z_{1} c_{1}+\varepsilon q$ in system (3.1). In term of the new variables, system (3.1) becomes

$$
\begin{align*}
& \dot{\phi}=p, \quad \varepsilon \dot{p}=q-\varepsilon \frac{h_{\tau}(\tau)}{h(\tau)} p, \quad \varepsilon \dot{q}=\left(z_{1} f_{1}-z_{2} f_{2}\right) p+\frac{z_{1} g_{1}+z_{2} g_{2}}{h(\tau)} \tag{3.10}\\
& \dot{c}_{1}=-f_{1} p-\frac{g_{1}}{h(\tau)}, \quad \dot{J}_{1}=\dot{J}_{2}=0, \quad \dot{\tau}=1
\end{align*}
$$

where, for $i=1,2$,

$$
f_{i}=f_{i}\left(c_{1},-\frac{z_{1} c_{1}+\varepsilon q}{z_{2}} ; d, \lambda d\right) \text { and } g_{i}=g_{i}\left(c_{1},-\frac{z_{1} c_{1}+\varepsilon q}{z_{2}}, J_{1}, J_{2} ; d, \lambda d\right) .
$$

It is again a singular perturbation problem and its limiting slow system is

$$
\begin{align*}
& q=0, \quad p=-\frac{1}{z_{1}\left(z_{1}-z_{2}\right) h(\tau) c_{1}} \sum_{i=1}^{2} z_{i} g_{i}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1}, J_{1}, J_{2} ; d, \lambda d\right), \\
& \dot{\phi}=p, \tag{3.11}\\
& \dot{c}_{1}=-f_{1}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1} ; d, \lambda d\right) p-\frac{1}{h(\tau)} g_{1}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1}, J_{1}, J_{2} ; d, \lambda d\right), \\
& \dot{J}_{1}=\dot{J}_{2}=0, \quad \dot{\tau}=1 .
\end{align*}
$$

In the above, for the expression for p, we have used (2.12) to find

$$
z_{1} f_{1}\left(c_{1},-\frac{z_{1} c_{1}}{z_{2}} ; d, \lambda d\right)-z_{2} f_{2}\left(c_{1},-\frac{z_{1} c_{1}}{z_{2}} ; d, \lambda d\right)=z_{1}\left(z_{1}-z_{2}\right) c_{1} .
$$

From system (3.11), the slow manifold is

$$
\mathcal{S}=\left\{q=0, p=-\frac{z_{1} g_{1}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1}, J_{1}, J_{2} ; d, \lambda d\right)+z_{2} g_{2}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1}, J_{1}, J_{2} ; d, \lambda d\right)}{z_{1}\left(z_{1}-z_{2}\right) h(\tau) c_{1}}\right\} .
$$

Therefore, the limiting slow system on \mathcal{S} is

$$
\begin{align*}
& \dot{\phi}=p, \\
& \dot{c}_{1}=-f_{1}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1} ; d, \lambda d\right) p-\frac{1}{h(\tau)} g_{1}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1}, J_{1}, J_{2} ; d, \lambda d\right), \tag{3.12}\\
& \dot{J}_{1}=\dot{J}_{2}=0, \quad \dot{\tau}=1,
\end{align*}
$$

where

$$
p=-\frac{z_{1} g_{1}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1}, J_{1}, J_{2} ; d, \lambda d\right)+z_{2} g_{2}\left(c_{1},-\frac{z_{1}}{z_{2}} c_{1}, J_{1}, J_{2} ; d, \lambda d\right)}{z_{1}\left(z_{1}-z_{2}\right) h(\tau) c_{1}} .
$$

As for the layer problem, we look for solutions of (3.12) of the form

$$
\begin{align*}
\phi(x) & =\phi_{0}(x)+\phi_{1}(x) d+o(d), \\
c_{1}(x) & =c_{10}(x)+c_{11}(x) d+o(d), \tag{3.13}\\
J_{1} & =J_{10}+J_{11} d+o(d), \quad J_{2}=J_{20}+J_{21} d+o(d)
\end{align*}
$$

to connect $\omega\left(N_{L}\right)$ and $\alpha\left(N_{R}\right)$ given in Proposition 3.2; in particular, for $j=0,1$,

$$
\left(\phi_{j}(0), c_{1 j}(0)\right)=\left(\phi_{j}^{L}, c_{1 j}^{L}\right), \quad\left(\phi_{j}(1), c_{1 j}(1)\right)=\left(\phi_{j}^{R}, c_{1 j}^{R}\right) .
$$

From system (3.12) and the definitions of f_{j} 's and g_{j} 's in (2.12), we have

$$
\begin{align*}
& \dot{\phi}_{0}=-\frac{z_{1} J_{10}+z_{2} J_{20}}{z_{1}\left(z_{1}-z_{2}\right) h(\tau) c_{10}}, \quad \dot{c}_{10}=\frac{z_{2}\left(J_{10}+J_{20}\right)}{\left(z_{1}-z_{2}\right) h(\tau)}, \tag{3.14}\\
& \dot{J}_{10}=\dot{J}_{20}=0, \quad \dot{\tau}=1,
\end{align*}
$$

and

$$
\begin{align*}
& \dot{\phi}_{1}=\frac{\left(z_{1} J_{10}+z_{2} J_{20}\right) c_{11}}{z_{1}\left(z_{1}-z_{2}\right) h(\tau) c_{10}^{2}}+\frac{z_{1}(1-\lambda)\left(J_{10}+J_{20}\right) c_{10}-\left(z_{1} J_{11}+z_{2} J_{21}\right)}{z_{1}\left(z_{1}-z_{2}\right) h(\tau) c_{10}}, \\
& \dot{c}_{11}=\frac{2\left(\lambda z_{1}-z_{2}\right)\left(J_{10}+J_{20}\right) c_{10}+z_{2}\left(J_{11}+J_{21}\right)}{\left(z_{1}-z_{2}\right) h(\tau)}, \tag{3.15}\\
& \dot{J}_{11}=\dot{J}_{21}=0, \quad \dot{\tau}=1 .
\end{align*}
$$

For convenience, we denote

$$
\begin{equation*}
H(x)=\int_{0}^{x} h^{-1}(s) d s \tag{3.16}
\end{equation*}
$$

Lemma 3.5. There is a unique solution $\left(\phi_{0}(x), c_{10}(x), J_{10}, J_{20}, \tau(x)\right)$ of (3.14) such that

$$
\begin{equation*}
\left(\phi_{0}(0), c_{10}(0), \tau(0)\right)=\left(\phi_{0}^{L}, c_{10}^{L}, 0\right) \quad \text { and }\left(\phi_{0}(1), c_{10}(1), \tau(1)\right)=\left(\phi_{0}^{R}, c_{10}^{R}, 1\right) \tag{3.17}
\end{equation*}
$$

where $\phi_{0}^{L}, \phi_{0}^{R}, c_{10}^{L}$, and c_{10}^{R} are given in Proposition 3.2. It is given by

$$
\begin{aligned}
\phi_{0}(x) & =\phi_{0}^{L}+\frac{\phi_{0}^{R}-\phi_{0}^{L}}{\ln c_{10}^{R}-\ln c_{10}^{L}} \ln \left(1-\frac{H(x)}{H(1)}+\frac{H(x)}{H(1)} \frac{c_{10}^{R}}{c_{10}^{L}}\right) \\
c_{10}(x) & =\left(1-\frac{H(x)}{H(1)}\right) c_{10}^{L}+\frac{H(x)}{H(1)} c_{10}^{R}, \\
J_{10} & =\frac{c_{10}^{L}-c_{10}^{R}}{H(1)}\left(1+\frac{z_{1}\left(\phi_{0}^{L}-\phi_{0}^{R}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}}\right), \\
J_{20} & =-\frac{z_{1}\left(c_{10}^{L}-c_{10}^{R}\right)}{z_{2} H(1)}\left(1+\frac{z_{2}\left(\phi_{0}^{L}-\phi_{0}^{R}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}}\right), \\
\tau(x) & =x
\end{aligned}
$$

Proof. The solution of system (3.14) with the initial condition ($\phi_{0}^{L}, c_{10}^{L}, J_{10}, J_{20}, 0$) that corresponds to the point $\left(\phi_{0}^{L}, 0, c_{10}^{L}, c_{20}^{L}, J_{10}, J_{20}, 0\right)$ is

$$
\begin{align*}
& \phi_{0}(x)=\phi_{0}^{L}-\frac{z_{1} J_{10}+z_{2} J_{20}}{z_{1}\left(z_{1}-z_{2}\right)} \int_{0}^{x} h^{-1}(s) c_{10}^{-1}(s) d s, \tag{3.18}\\
& c_{10}(x)=c_{10}^{L}+\frac{z_{2}\left(J_{10}+J_{20}\right)}{z_{1}-z_{2}} H(x), \quad \tau(x)=x .
\end{align*}
$$

It follows from the c_{10}-equation and $c_{10}(1)=c_{10}^{R}$ that

$$
\begin{equation*}
J_{10}+J_{20}=-\frac{\left(z_{1}-z_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{z_{2} H(1)} . \tag{3.19}
\end{equation*}
$$

Note that, from (3.14),

$$
\int_{0}^{x} h^{-1}(s) c_{10}^{-1}(s) d s=\frac{z_{1}-z_{2}}{z_{2}\left(J_{10}+J_{20}\right)} \int_{0}^{x} \frac{\dot{c}_{10}(s)}{c_{10}(s)} d s=H(1) \frac{\ln c_{10}^{L}-\ln c_{10}(x)}{c_{10}^{L}-c_{10}^{R}}
$$

Thus,

$$
\phi_{0}(x)=\phi_{0}^{L}-H(1) \frac{z_{1} J_{10}+z_{2} J_{20}}{z_{1}\left(z_{1}-z_{2}\right)} \frac{\ln c_{10}^{L}-\ln c_{10}(x)}{c_{10}^{L}-c_{10}^{R}}
$$

Applying the boundary condition $c_{10}(1)=c_{10}^{R}$ and $\phi_{0}(1)=\phi_{0}^{R}$, we have

$$
\begin{align*}
J_{10}+J_{20} & =-\frac{\left(z_{1}-z_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{z_{2} H(1)}, \\
z_{1} J_{10}+z_{2} J_{20} & =\frac{z_{1}\left(z_{1}-z_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)\left(\phi_{0}^{L}-\phi_{0}^{R}\right)}{H(1)\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)} . \tag{3.20}
\end{align*}
$$

The expressions for J_{10} and J_{20}, and hence, for $\phi_{0}(x)$ and $c_{10}(x)$ follow directly.

For convenience, we define three functions
$M=M\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right), N=N\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right), P(x)=P\left(x ; L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)$
as

$$
\begin{align*}
M= & z_{1} c_{10}^{L} w\left(L_{1}, L_{2}\right)-z_{1} c_{10}^{R} w\left(R_{1}, R_{2}\right)+\frac{z_{1}\left(\lambda z_{1}-z_{2}\right)}{z_{2}}\left(\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}\right), \\
N= & \frac{z_{1}\left(c_{10}^{L}-c_{10}^{R}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\phi_{1}^{L}-\phi_{1}^{R}\right)-\frac{(1-\lambda) z_{1}}{z_{2}} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}}+\frac{\phi_{0}^{L}-\phi_{0}^{R}}{\ln c_{10}^{L}-\ln c_{10}^{R}} M \\
& -\frac{z_{1}\left(c_{10}^{L}-c_{10}^{R}\right)\left(w\left(L_{1}, L_{2}\right)-w\left(R_{1}, R_{2}\right)\right)}{\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)^{2}}\left(\phi_{0}^{L}-\phi_{0}^{R}\right), \\
P(x)= & \frac{\lambda z_{1}-z_{2}}{z_{2}} \frac{\left(c_{10}^{L}-c_{10}^{R}\right) H(x)}{\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right) H(1)} \tag{3.21}\\
& +\frac{c_{10}^{L}-c_{10}(x)}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\frac{w\left(L_{1}, L_{2}\right)}{c_{10}(x)}+\frac{\lambda z_{1}-z_{2}}{z_{2}} \frac{c_{10}^{L}}{c_{10}(x)}\right) \\
& -\frac{H(x)}{z_{1}\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right) c_{10}(x) H(1)} M+\frac{\ln c_{10}^{L}-\ln c_{10}(x)}{z_{1}\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)\left(c_{10}^{L}-c_{10}^{R}\right)} M
\end{align*}
$$

where

$$
w(\alpha, \beta)=\alpha+\lambda \beta+\frac{\lambda z_{1}-z_{2}}{z_{1}-z_{2}}(\alpha+\beta) .
$$

Lemma 3.6. There is a unique solution $\left(\phi_{1}(x), c_{11}(x), J_{11}, J_{21}, \tau(x)\right)$ of (3.15) such that

$$
\begin{equation*}
\left(\phi_{1}(0), c_{11}(0), \tau(0)\right)=\left(\phi_{1}^{L}, c_{11}^{L}, 0\right) \text { and }\left(\phi_{1}(1), c_{11}(1), \tau(1)\right)=\left(\phi_{1}^{R}, c_{11}^{R}, 1\right) \tag{3.22}
\end{equation*}
$$

where $\phi_{1}^{L}, \phi_{1}^{R}, c_{11}^{L}$, and c_{11}^{R} are given in Proposition 3.2. It is given by

$$
\begin{aligned}
\phi_{1}(x) & =\phi_{1}^{L}-\frac{(1-\lambda)\left(c_{10}^{L}-c_{10}^{R}\right) H(x)}{z_{2} H(1)}+\left(\phi_{0}^{L}-\phi_{0}^{R}\right) P(x)-\frac{\ln c_{10}(x)-\ln c_{10}^{L}}{z_{1}\left(z_{1}-z_{2}\right)\left(c_{10}^{R}-c_{10}^{L}\right)} N, \\
c_{11}(x) & =c_{11}^{L}+\frac{\lambda z_{1}-z_{2}}{z_{2}}\left(c_{10}^{2}(x)-\left(c_{10}^{L}\right)^{2}\right)-\frac{H(x)}{z_{1} H(1)} M, \\
J_{11} & =\frac{M}{z_{1} H(1)}+\frac{N}{H(1)}, \quad J_{21}=-\frac{M}{z_{2} H(1)}-\frac{N}{H(1)},
\end{aligned}
$$

where M, N, and P are defined in (3.21).
Proof. It follows from (3.15) that

$$
c_{11}(x)=c_{11}^{L}+\frac{\lambda z_{1}-z_{2}}{z_{2}}\left(c_{10}^{2}(x)-\left(c_{10}^{L}\right)^{2}\right)+\frac{z_{2}\left(J_{11}+J_{21}\right)}{z_{1}-z_{2}} H(x) .
$$

Thus, from Proposition 3.2,

$$
\begin{aligned}
\frac{z_{2}\left(J_{11}+J_{21}\right)}{z_{2}-z_{1}} H(1) & =c_{11}^{L}-c_{11}^{R}+\frac{\lambda z_{1}-z_{2}}{z_{2}}\left(\left(c_{10}^{R}\right)^{2}-\left(c_{10}^{L}\right)^{2}\right) \\
& =c_{10}^{L} w\left(L_{1}, L_{2}\right)-c_{10}^{R} w\left(R_{1}, R_{2}\right)+\frac{\lambda z_{1}-z_{2}}{z_{2}}\left(\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}\right),
\end{aligned}
$$

or, by the definition of M in (3.21),

$$
\begin{equation*}
J_{11}+J_{21}=\frac{z_{2}-z_{1}}{z_{1} z_{2} H(1)} M \tag{3.23}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
c_{11}(x)=c_{11}^{L}+\frac{\lambda z_{1}-z_{2}}{z_{2}}\left(c_{10}^{2}(x)-\left(c_{10}^{L}\right)^{2}\right)-\frac{H(x)}{z_{1} H(1)} M . \tag{3.24}
\end{equation*}
$$

Again, from (3.15)

$$
\begin{aligned}
\phi_{1}(x)= & \phi_{1}^{L}+\frac{z_{1} J_{10}+z_{2} J_{20}}{z_{1}\left(z_{1}-z_{2}\right)} \int_{0}^{x} \frac{c_{11}(s)}{h(s) c_{10}^{2}(s)} d s+\frac{(1-\lambda)\left(J_{10}+J_{20}\right)}{z_{1}-z_{2}} H(x) \\
& -\frac{z_{1} J_{11}+z_{2} J_{21}}{z_{1}\left(z_{1}-z_{2}\right)} \int_{0}^{x} \frac{1}{h(s) c_{10}(s)} d s .
\end{aligned}
$$

Note that, from (3.14) and (3.19),

$$
\begin{aligned}
\int_{0}^{x} \frac{c_{10}(s)}{h(s)} d s & =\frac{z_{1}-z_{2}}{z_{2}\left(J_{10}+J_{20}\right)} \int_{0}^{x} c_{10}(s) \dot{c}_{10}(s) d s=\frac{H(1)}{2} \frac{\left(c_{10}^{L}\right)^{2}-c_{10}^{2}(x)}{c_{10}^{L}-c_{10}^{R}}, \\
\int_{0}^{x} \frac{1}{h(s) c_{10}^{2}(s)} d s & =\frac{z_{1}-z_{2}}{z_{2}\left(J_{10}+J_{20}\right)} \int_{0}^{x} \frac{\dot{c}_{10}(s)}{c_{10}^{2}(s)} d s=H(1) \frac{c_{10}^{L}-c_{10}(x)}{\left(c_{10}^{L}-c_{10}^{R}\right) c_{10}^{L} c_{10}(x)} \\
\int_{0}^{x} \frac{\int_{0}^{s} h^{-1}(\sigma) d \sigma}{h(s) c_{10}^{2}(s)} d s & =-\frac{z_{1}-z_{2}}{z_{2}\left(J_{10}+J_{20}\right)} \int_{0}^{x} \int_{0}^{s} h^{-1}(\sigma) d \sigma \frac{d}{d s} c_{10}^{-1}(s) d s \\
& =\frac{H(1)}{c_{10}^{L}-c_{10}^{R}}\left(\frac{H(x)}{c_{10}(x)}-\int_{0}^{x} h^{-1}(s) c_{10}^{-1}(s) d s\right) \\
& =\frac{H(1) H(x)}{\left(c_{10}^{L}-c_{10}^{R}\right) c_{10}(x)}-H^{2}(1) \frac{\ln c_{10}^{L}-\ln c_{10}(x)}{\left(c_{10}^{L}-c_{10}^{R}\right)^{2}} .
\end{aligned}
$$

These, together with (3.24) and (3.20), yield

$$
\begin{aligned}
& \int_{0}^{x} \frac{c_{11}(s)}{h(s) c_{10}^{2}(s)} d s=\left(w\left(L_{1}, L_{2}\right)+\frac{\lambda z_{1}-z_{2}}{z_{2}} c_{10}^{L}\right) \frac{H(1)\left(c_{10}^{L}-c_{10}(x)\right)}{\left(c_{10}^{L}-c_{10}^{R}\right) c_{10}(x)} \\
& \quad+\frac{\lambda z_{1}-z_{2}}{z_{2}} H(x)-\frac{M}{z_{1}\left(c_{10}^{L}-c_{10}^{R}\right)}\left(\frac{H(x)}{c_{10}(x)}-\frac{\ln c_{10}^{L}-\ln c_{10}(x)}{c_{10}^{L}-c_{10}^{R}} H(1)\right) .
\end{aligned}
$$

A careful calculation then gives

$$
\begin{aligned}
\phi_{1}(x)= & \phi_{1}^{L}-\frac{(1-\lambda)\left(c_{10}^{L}-c_{10}^{R}\right) H(x)}{z_{2} H(1)}+\left(\phi_{0}^{L}-\phi_{0}^{R}\right) P(x) \\
& -\frac{z_{1} J_{11}+z_{2} J_{21}}{z_{1}\left(z_{1}-z_{2}\right)} \frac{\ln c_{10}^{L}-\ln c_{10}(x)}{c_{10}^{L}-c_{10}^{R}} H(1) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\phi_{1}^{R}= & \phi_{1}^{L}-\frac{1-\lambda}{z_{2}}\left(c_{10}^{L}-c_{10}^{R}\right)+\left(\phi_{0}^{L}-\phi_{0}^{R}\right) P(1) \\
& -\frac{z_{1} J_{11}+z_{2} J_{21}}{z_{1}\left(z_{1}-z_{2}\right)} \frac{\ln c_{10}^{L}-\ln c_{10}^{R}}{c_{10}^{L}-c_{10}^{R}} H(1) \\
= & \phi_{1}^{L}-\frac{1-\lambda}{z_{2}}\left(c_{10}^{L}-c_{10}^{R}\right)-\frac{w\left(L_{1}, L_{2}\right)-w\left(R_{1}, R_{2}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\phi_{0}^{L}-\phi_{0}^{R}\right) \\
& +\frac{M\left(\phi_{0}^{L}-\phi_{0}^{R}\right)}{z_{1}\left(c_{10}^{L}-c_{10}^{R}\right)}-\frac{\left(z_{1} J_{11}+z_{2} J_{21}\right)\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)}{z_{1}\left(z_{1}-z_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)} H(1) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& H(1) \frac{z_{1} J_{11}+z_{2} J_{21}}{z_{1}-z_{2}}=z_{1} \frac{c_{10}^{L}-c_{10}^{R}}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\phi_{1}^{L}-\phi_{1}^{R}\right)-\frac{(1-\lambda) z_{1}}{z_{2}} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}} \\
& \quad+\frac{M\left(\phi_{0}^{L}-\phi_{0}^{R}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}}-z_{1} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)\left(w\left(L_{1}, L_{2}\right)-w\left(R_{1}, R_{2}\right)\right)}{\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)^{2}}\left(\phi_{0}^{L}-\phi_{0}^{R}\right)=N .
\end{aligned}
$$

Formulas for J_{11}, J_{21}, and ϕ_{1} follow directly.
Corollary 3.7. Under the electroneutrality conditions at the boundaries, that is, $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=-z_{2} R_{2}=R$, we have,

$$
\begin{aligned}
J_{10}= & \frac{L-R}{z_{1} H(1)}\left(1+\frac{z_{1} \bar{V}}{\ln L-\ln R}\right), \quad J_{20}=\frac{L-R}{z_{2} H(1)}\left(1+\frac{z_{2} \bar{V}}{\ln L-\ln R}\right) ; \\
J_{11}= & \frac{\lambda z_{1}-z_{2}}{z_{1} z_{2} H(1)} \frac{R-L}{\ln R-\ln L}\left(\frac{2(R-L)}{\ln R-\ln L}-(R+L)\right) \bar{V} \\
& +\frac{1-\lambda}{z_{1} z_{2} H(1)} \frac{(R-L)^{2}}{\ln R-\ln L}+\frac{\lambda z_{1}-z_{2}}{z_{1}^{2} z_{2} H(1)}\left(R^{2}-L^{2}\right), \\
J_{21}= & -\frac{\lambda z_{1}-z_{2}}{z_{1} z_{2} H(1)} \frac{R-L}{\ln R-\ln L}\left(\frac{2(R-L)}{\ln R-\ln L}-(R+L)\right) \bar{V} \\
& -\frac{1-\lambda}{z_{1} z_{2} H(1)} \frac{(R-L)^{2}}{\ln R-\ln L}-\frac{\lambda z_{1}-z_{2}}{z_{1} z_{2}^{2} H(1)}\left(R^{2}-L^{2}\right) .
\end{aligned}
$$

Proof. This follows directly from Lemmas 3.5 and 3.6 and Proposition 3.2.
The slow orbit, up to $O(d)$,

$$
\begin{equation*}
\Lambda(x ; d)=\left(\phi_{0}(x)+\phi_{1}(x) d, c_{10}(x)+c_{11}(x) d, J_{10}+J_{11} d, J_{20}+J_{21} d, \tau(x)\right) \tag{3.25}
\end{equation*}
$$

given in Lemmas 3.5 and 3.6 connects $\omega\left(N_{L}\right)$ and $\alpha\left(N_{R}\right)$. Let \bar{M}_{L} (resp., \bar{M}_{R}) be the forward (resp., backward) image of $\omega\left(N_{L}\right)$ (resp., $\alpha\left(N_{R}\right)$) under the slow flow (3.12) on the five-dimensional slow manifold \mathcal{S}. Following the idea in [51], we have

Proposition 3.8. There exists $d_{0}>0$ small depending on boundary conditions so that, if $0 \leq d \leq d_{0}$, then, on the five-dimensional slow manifold \mathcal{S}, \bar{M}_{L} and \bar{M}_{R} intersects transversally along the unique orbit $\Lambda(x ; d)$ given in (3.25).

Proof. To see the transversality of the intersection, it suffices to show that $\omega\left(N_{L}\right) \cdot 1$ (the image of $\omega\left(N_{L}\right)$ under the time-one map of the flow of system (3.12)) is transversal to $\alpha\left(N_{R}\right)$ on $\mathcal{S} \bigcap\{\tau=1\}$. We will show first that, for $d=0, \omega\left(N_{L}\right) \cdot 1$ and $\alpha\left(N_{R}\right)$ intersect transversally on $\mathcal{S} \bigcap\{\tau=1\}$. We will use $\left(\phi, c_{1}, J_{1}, J_{2}\right)$ as a coordinate system on $\mathcal{S} \bigcap\{\tau=1\}$. It follows from (3.18) that, for $d=0, \omega\left(N_{L}\right) \cdot 1$ is given by

$$
\omega\left(N_{L}\right) \cdot 1=\left\{\left(\phi\left(J_{1}, J_{2}\right), c_{1}\left(J_{1}, J_{2}\right), J_{1}, J_{2}\right): \text { arbitrary } J_{1}, J_{2}\right\}
$$

with

$$
\begin{aligned}
& \phi\left(J_{1}, J_{2}\right)=\phi_{0}^{L}-\frac{z_{1} J_{1}+z_{2} J_{2}}{z_{1} z_{2}\left(J_{1}+J_{2}\right)} \ln \frac{c_{1}\left(J_{1}, J_{2}\right)}{c_{10}^{L}}, \\
& c_{1}\left(J_{1}, J_{2}\right)=c_{10}^{L}+\frac{z_{2} H(1)\left(J_{1}+J_{2}\right)}{z_{1}-z_{2}} .
\end{aligned}
$$

Thus, the tangent space to $\omega\left(N_{L}\right) \cdot 1$ restricted on $\mathcal{S} \bigcap\{\tau=1\}$ is spanned by the vectors

$$
\left(\phi_{J_{1}},\left(c_{1}\right)_{J_{1}}, 1,0\right)=\left(\phi_{J_{1}}, \frac{z_{2}}{z_{1}-z_{2}} H(1), 1,0\right)
$$

and

$$
\left(\phi_{J_{2}},\left(c_{1}\right)_{J_{2}}, 0,1\right)=\left(\phi_{J_{2}}, \frac{z_{2}}{z_{1}-z_{2}} H(1), 0,1\right) .
$$

In view of the display in Proposition 3.2, the set $\alpha\left(N_{R}\right)$ is parameterized by J_{1} and J_{2}, and hence, the tangent space to $\alpha\left(N_{R}\right)$ restricted on $\mathcal{S} \bigcap\{\tau=1\}$ is spanned by $(0,0,1,0)$ and $(0,0,0,1)$. Note that $\mathcal{S} \bigcap\{\tau=1\}$ is four dimensional. Thus, it suffices to show that the above four vectors are linearly independent or, equivalently, $\phi_{J_{1}} \neq \phi_{J_{2}}$ at $\left(J_{1}, J_{2}\right)=\left(J_{10}, J_{20}\right)$. The latter can be verified by a direct computation as follows:

$$
\phi_{J_{1}}-\phi_{J_{2}}=-\frac{z_{1}-z_{2}}{z_{1} z_{2}\left(J_{1}+J_{2}\right)} \ln \left[1+\frac{z_{2}\left(J_{1}+J_{2}\right)}{\left(z_{1}-z_{2}\right) c_{10}^{L}} H(1)\right] \neq 0,
$$

even as $J_{1}+J_{2} \rightarrow 0$. This establishes the transversal intersection of $\omega\left(N_{L}\right) \cdot 1$ and $\alpha\left(N_{R}\right)$ on $\mathcal{S} \bigcap\{\tau=1\}$. From the smooth dependence of solutions on parameter d, we conclude that there exists $d_{0}>0$ small, so that, if $0 \leq d \leq d_{0}$, then $\omega\left(N_{L}\right) \cdot 1$ and $\alpha\left(N_{R}\right)$ intersect transversally on $\mathcal{S} \bigcap\{\tau=1\}$. This completes the proof.

3.2 Existence of solutions near the singular orbit

We have constructed a unique singular orbit on $[0,1]$ that connects B_{L} to B_{R}. It consists of two boundary layer orbits Γ^{0} from the point

$$
\left(\bar{V}, u_{0}^{l}+u_{1}^{l} d+o(d), L_{1}, L_{2}, J_{10}+J_{11} d+o(d), J_{20}+J_{21} d+o(d), 0\right) \in B_{L}
$$

to the point

$$
\left(\phi^{L}, 0, c_{1}^{L}, c_{2}^{L}, J_{1}, J_{2}, 0\right) \in \omega\left(N_{L}\right) \subset \mathcal{Z}
$$

and Γ^{1} from the point

$$
\left(\phi^{R}, 0, c_{1}^{R}, c_{2}^{R}, J_{1}, J_{2}, 1\right) \in z_{1}\left(N_{R}\right) \subset \mathcal{Z}
$$

to the point

$$
\left(0, u_{0}^{r}+u_{1}^{r}+o(d), R_{1}, R_{2}, J_{1}, J_{2}, 1\right) \in B_{R}
$$

and a regular layer Λ on \mathcal{Z} that connects the two landing points

$$
\left(\phi^{L}, 0, c_{1}^{L}, c_{2}^{L}, J_{1}, J_{2}, 0\right) \in \omega\left(N_{L}\right)
$$

and

$$
\left(\phi^{R}, 0, c_{1}^{R}, c_{2}^{R}, J_{1}, J_{2}, 1\right) \in \alpha\left(N_{R}\right)
$$

of the two boundary layers.
We now establish the existence of a solution of (2.11) and (2.13) near the singular orbit constructed above which is a union of two boundary layers and one regular layer $\Gamma^{0} \bigcup \Lambda \bigcup \Gamma^{1}$. The proof follows the same line as that in $[22,51,52]$ and the main tool used is the Exchange Lemma (see, for example [44, 45, 46, 80]) of the geometric singular perturbation theory.

Theorem 3.9. Let $\Gamma^{0} \bigcup \Lambda \bigcup \Gamma^{1}$ be the singular orbit of the connecting problem system (3.1) associated to B_{L} and B_{R} in system (3.3). Let $d_{0}>0$ be as in Proposition 3.8. Then, there exists $\varepsilon_{0}>0$ small (depending on the boundary conditions and d_{0}) so that, if $0 \leq d \leq d_{0}$ and $0<\varepsilon \leq \varepsilon_{0}$, then the boundary value problem (2.11) and (2.13) has a unique smooth solution near the singular orbit $\Gamma^{0} \bigcup \Lambda \bigcup \Gamma^{1}$.

Proof. Let $d_{0}>0$ be as in Proposition 3.8. For $0 \leq d \leq d_{0}$, denote $u^{l}=u_{0}^{l}+u_{1}^{l} d$, $J_{1}(d)=J_{10}+J_{11} d$ and $J_{2}(d)=J_{20}+J_{21} d$. Fix $\delta>0$ small to be determined. Let

$$
B_{L}(\delta)=\left\{\left(\bar{V}, u, L_{1}, L_{2}, J_{1}, J_{2}, 0\right) \in \mathbb{R}^{7}:\left|u-u^{l}\right|<\delta,\left|J_{i}-J_{i}(d)\right|<\delta\right\}
$$

For $\varepsilon>0$, let $M_{L}(\varepsilon, \delta)$ be the forward trace of $B_{L}(\delta)$ under the flow of system (3.1) or equivalently of system (3.2) and let $M_{R}(\varepsilon)$ be the backward trace of B_{R}. To prove the existence and uniqueness statement, it suffices to show that $M_{L}(\varepsilon, \delta)$ intersects $M_{R}(\varepsilon)$ transversally in a neighborhood of the singular orbit $\Gamma^{0} \bigcup \Lambda \bigcup \Gamma^{1}$. The latter will be established by an application of Exchange Lemmas.

Note that $\operatorname{dim} B_{L}(\delta)=3$. It is clear that the vector field of the fast system (3.2) is not tangent to $B_{L}(\delta)$ for $\varepsilon \geq 0$, and hence, $\operatorname{dim} M_{L}(\varepsilon, \delta)=4$. We next apply Exchange Lemma to track $M_{L}(\varepsilon, \delta)$ in the vicinity of $\Gamma^{0} \bigcup \Lambda \bigcup \Gamma^{1}$. First of all, the transversality of the intersection $B_{L}(\delta) \bigcap W^{s}(\mathcal{Z})$ along Γ^{0} in Proposition 3.2 implies the transversality of intersection $M_{L}(0, \delta) \bigcap W^{s}(\mathcal{Z})$. Secondly, we have also established that $\operatorname{dim} \omega\left(N_{L}\right)=\operatorname{dim} N_{L}-1=2$ in Proposition 3.2 and that the limiting slow flow is not tangent to $\omega\left(N_{L}\right)$ in Section 3.1.2. With these conditions, Exchange Lemma $([44,45,46,80])$ states that there exist $\rho>0$ and $\varepsilon_{1}>0$ so that, if $0<\varepsilon \leq \varepsilon_{1}$, then $M_{L}(\varepsilon, \delta)$ will first follow Γ^{0} toward $\omega\left(N_{L}\right) \subset \mathcal{Z}$, then follow the trace of $\omega\left(N_{L}\right)$ in the vicinity of Λ toward $\{\tau=1\}$, leave the vicinity of \mathcal{Z}, and, upon exit, a portion of $M_{L}(\varepsilon, \delta)$ is $C^{1} O(\varepsilon)$-close to $W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)$ in the vicinity of Γ^{1} (see Figure 2 for an illustration). Note that $\operatorname{dim} W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)=\operatorname{dim} M_{L}(\varepsilon, \delta)=4$.

It remains to show that $W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)$ intersects $M_{R}(\varepsilon)$ transversally since $M_{L}(\varepsilon, \delta)$ is $C^{1} O(\varepsilon)$-close to $W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)$. Recall that, for $\varepsilon=0, M_{R}$ intersects $W^{u}(\mathcal{Z})$ transversally along N_{R} (Proposition 3.2); in particular, at $\gamma_{1}:=\alpha\left(\Gamma^{1}\right) \in \alpha\left(N_{R}\right) \subset \mathcal{Z}$, we have

$$
T_{\gamma_{1}} M_{R}=T_{\gamma_{1}} \alpha\left(N_{R}\right)+T_{\gamma_{1}} W^{u}\left(\gamma_{1}\right)+\operatorname{span}\left\{V_{s}\right\}
$$

Figure 2: Illustration of the evolution of $M_{L}(\varepsilon, \delta)$ from the vicinity of $\tau=0$ to that of $\tau=1$: On the left, $M_{L}(\varepsilon, \delta)$ intersects $W^{s}(\mathcal{Z})$ transversally and approaches $\omega\left(N_{L}\right)$ in the vicinity of Γ^{0}; It then follows the trace of $\omega\left(N_{L}\right)$ in the vicinity of Λ on \mathcal{Z} toward the vicinity of $\omega\left(N_{L}\right) \cdot(1-\rho, 1+\rho)$; A portion of it will leave the vicinity of \mathcal{Z}, and, upon exit from $\mathcal{Z}, M_{L}(\varepsilon, \delta)$ is $C^{1} O(\varepsilon)$-close to $W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)$ in the vicinity of Γ^{1}. In the figure, $W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)$ is denoted by W^{u}.
where, $T_{\gamma_{1}} W^{u}\left(\gamma_{1}\right)$ is the tangent space of the one-dimensional unstable fiber $W^{u}\left(\gamma_{1}\right)$ at γ_{1} and the vector $V_{s} \notin T_{\gamma_{1}} W^{u}(\mathcal{Z})$ (the latter follows from the transversality of the intersection of M_{R} and $\left.W^{u}(\mathcal{Z})\right)$. Also,

$$
T_{\gamma_{1}} W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)=T_{\gamma_{1}}\left(\omega\left(N_{L}\right) \cdot 1\right)+\operatorname{span}\left\{V_{\tau}\right\}+T_{\gamma_{1}} W^{u}\left(\gamma_{1}\right)
$$

where the vector V_{τ} is the tangent vector to the τ-axis as the result of the interval factor $(1-\rho, 1+\rho)$. Recall from Proposition 3.8 that $\omega\left(N_{L}\right) \cdot 1$ and $\alpha\left(N_{R}\right)$ are transversal on $\mathcal{Z} \cap\{\tau=1\}$. Therefore, at γ_{1}, the tangent spaces $T_{\gamma_{1}} M_{R}$ and $T_{\gamma_{1}} W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)$ contain seven linearly independent vectors: V_{s}, V_{τ}, $T_{\gamma_{1}} W^{u}\left(\gamma_{1}\right)$ and the other four from $T_{\gamma_{1}}\left(\omega\left(N_{L}\right) \cdot 1\right)$ and $T_{\gamma_{1}} \alpha\left(N_{R}\right)$; that is, M_{R} and $W^{u}\left(\omega\left(N_{L}\right) \times(1-\rho, 1+\rho)\right)$ intersect transversally. We thus conclude that, there exists $0<\varepsilon_{0} \leq \varepsilon_{1}$ so that, if $0<\varepsilon \leq \varepsilon_{0}$, then $M_{L}(\varepsilon, \delta)$ intersects $M_{R}(\varepsilon)$ transversally.

For uniqueness, note that the transversality of the intersection $M_{L}(\varepsilon, \delta) \bigcap M_{R}(\varepsilon)$ implies $\operatorname{dim}\left(M_{L}(\varepsilon, \delta) \bigcap M_{R}(\varepsilon)\right)=\operatorname{dim} M_{L}(\varepsilon, \delta)+\operatorname{dim} M_{R}(\varepsilon)-7=1$. Thus, there exists $\delta_{0}>0$ such that, if $0<\delta \leq \delta_{0}$, the intersection $M_{L}(\varepsilon, \delta) \bigcap M_{R}(\varepsilon)$ consists of precisely one solution near the singular orbit $\Gamma^{0} \bigcup \Lambda \bigcup \Gamma^{1}$.

4 Ion size effects on the flows of charge and matter

The analysis in the previous sections not only establishes the existence of solutions for the boundary value problem (2.11) and (2.13) but also provides quantitative information on the solution that allows us to extract explicit approximations to the
current \mathcal{I} and the flow rate of matter, \mathcal{T}, for small ε and d. From the explicit approximations, we are able to identify some critical values for potential V that characterize ion size effects on the ionic flow. A number of scaling laws will be also obtained. Their consequences of ion size effects are discussed.

4.1 I-V relation, critical potentials, and scaling laws

4.1.1 I-V relation and its approximation

For fixed boundary concentrations L_{1}, L_{2}, R_{1} and R_{2} in (2.2), we express the I-V relation in (4.1) as

$$
\begin{equation*}
\mathcal{I}(V ; \lambda, \varepsilon, d)=I_{0}(V ; \varepsilon)+I_{1}(V ; \lambda, \varepsilon) d+o(d), \tag{4.1}
\end{equation*}
$$

where $I_{0}(V ; \varepsilon)$ is the I-V relation without counting the ion size effect and $I_{1}(V ; \lambda, \varepsilon) d$ is the leading term containing ion size effect on I-V relation.

Recall that we denote $H(1)=\int_{0}^{1} h^{-1}(s) d s$ in (3.16).
Theorem 4.1. In formula (4.1), one has

$$
\begin{aligned}
I_{0}(V ; 0) & =\rho_{00}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)+\rho_{01}\left(L_{1}, L_{2}, R_{1}, R_{2}\right) \frac{e}{k T} V, \\
I_{1}(V ; \lambda, 0) & =\rho_{10}\left(L_{1}, L_{2}, R_{1}, R_{2}, \lambda\right)+\rho_{11}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right) \frac{e}{k T} V,
\end{aligned}
$$

where

$$
\begin{aligned}
& \rho_{00}=\frac{z_{1}\left(D_{1}-D_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{H(1)}+\frac{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{H(1)\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)} \ln \frac{L_{1} R_{2}}{L_{2} R_{1}}, \\
& \rho_{01}=\frac{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{H(1)\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)}, \\
& \rho_{10}= \\
& \quad \frac{z_{1}\left(D_{1}-D_{2}\right)}{H(1)}\left[c_{10}^{L} w\left(L_{1}, L_{2}\right)-c_{10}^{R} w\left(R_{1}, R_{2}\right)+\frac{\lambda z_{1}-z_{2}}{z_{2}}\left(\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}\right)\right] \\
& \\
& -\frac{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)}{H(1)}\left[\frac{1-\lambda}{z_{2}} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}}-\frac{c_{10}^{L}-c_{10}^{R}}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\phi_{1}^{L}-\phi_{1}^{R}\right)\right] \\
& \\
& +\frac{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)}{\left(z_{1}-z_{2}\right) H(1)} \frac{c_{10}^{L} w\left(L_{1}, L_{2}\right)-c_{10}^{R} w\left(R_{1}, R_{2}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R} \frac{L_{1} R_{2}}{L_{2} R_{1}}} \\
& +\frac{z_{1}\left(\lambda z_{1}-z_{2}\right)\left(z_{1} D_{1}-z_{2} D_{2}\right)}{\left(z_{1}-z_{2}\right) z_{2} H(1)} \frac{\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}} \frac{L_{1} R_{2}}{L_{2} R_{1}} \\
& -\frac{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)}{\left(z_{1}-z_{2}\right) H(1)} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)\left(w\left(L_{1}, L_{2}\right)-w\left(R_{1}, R_{2}\right)\right)}{\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)^{2}} \ln \frac{L_{1} R_{2}}{L_{2} R_{1}}, \\
& \\
& \rho_{11}=\frac{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)}{H(1)} \frac{c_{10}^{L} w\left(L_{1}, L_{2}\right)-c_{10}^{R} w\left(R_{1}, R_{2}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}} \\
& \quad+\frac{z_{1}\left(\lambda z_{1}-z_{2}\right)\left(z_{1} D_{1}-z_{2} D_{2}\right)}{z_{2} H(1)} \frac{\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}} \\
&
\end{aligned} \quad-\frac{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)}{H(1)} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)\left(w\left(L_{1}, L_{2}\right)-w\left(R_{1}, R_{2}\right)\right)}{\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)^{2}},
$$

where $c_{10}^{L}, c_{10}^{R}, \phi_{1}^{L}$ and ϕ_{1}^{R} are given in Proposition 3.2 and

$$
w(\alpha, \beta)=\alpha+\lambda \beta+\frac{\lambda z_{1}-z_{2}}{z_{1}-z_{2}}(\alpha+\beta) .
$$

Proof. For the zeroth order in ε, it follows from

$$
\begin{align*}
\mathcal{I}(V ; \lambda, 0, d) & =z_{1} \mathcal{J}_{1}+z_{2} \mathcal{J}_{2}=z_{1} D_{1} J_{1}+z_{2} D_{2} J_{2} \\
& =\left(z_{1} D_{1} J_{10}+z_{2} D_{2} J_{20}\right)+\left(z_{1} D_{1} J_{11}+z_{2} D_{2} J_{21}\right) d+o(d) \tag{4.2}
\end{align*}
$$

that

$$
I_{0}(V ; 0)=z_{1} D_{1} J_{10}+z_{2} D_{2} J_{20} \text { and } I_{1}(V ; \lambda, 0)=z_{1} D_{1} J_{11}+z_{2} D_{2} J_{21} .
$$

The formulas for $I_{0}(V ; 0)$ and $I_{1}(V ; 0)$ follow directly from Lemmas 3.5 and 3.6.
Corollary 4.2. Under the electroneutrality conditions $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=-z_{2} R_{2}=R$, one has

$$
\begin{aligned}
I_{0}(V ; 0)= & \frac{\left(D_{1}-D_{2}\right)(L-R)}{H(1)}+\frac{\left(z_{1} D_{1}-z_{2} D_{2}\right)(L-R)}{H(1)(\ln L-\ln R)} \frac{e}{k T} V, \\
I_{1}(V ; \lambda, 0)= & \frac{\left(\lambda z_{1}-z_{2}\right)\left(D_{2}-D_{1}\right)\left(L^{2}-R^{2}\right)}{z_{1} z_{2} H(1)}-\frac{(1-\lambda)\left(z_{1} D_{1}-z_{2} D_{2}\right)(L-R)^{2}}{z_{1} z_{2} H(1)(\ln L-\ln R)} \\
& -\frac{\left(\lambda z_{1}-z_{2}\right)\left(z_{1} D_{1}-z_{2} D_{2}\right)(L-R)^{2}}{z_{1} z_{2} H(1)(\ln L-\ln R)^{2}}\left(\frac{(L+R)(\ln L-\ln R)}{L-R}-2\right) \frac{e}{k T} V .
\end{aligned}
$$

In particular, for fixed $R>0$, one has

$$
\lim _{L \rightarrow R} I_{0}(V ; 0)=\frac{\left(z_{1} D_{1}-z_{2} D_{2}\right) R}{H(1)} \frac{e}{k T} V \text { and } \lim _{L \rightarrow R} I_{1}(V ; \lambda, 0)=0 .
$$

Proof. Assume $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=-z_{2} R_{2}=R$. It can be checked directly that

$$
\begin{align*}
& \rho_{00}=\frac{\left(D_{1}-D_{2}\right)(L-R)}{H(1)}, \quad \rho_{01}=\frac{\left(z_{1} D_{1}-z_{2} D_{2}\right)(L-R)}{H(1)(\ln L-\ln R)}, \\
& \rho_{10}=\frac{\left(\lambda z_{1}-z_{2}\right)\left(D_{2}-D_{1}\right)\left(L^{2}-R^{2}\right)}{z_{1} z_{2} H(1)}-\frac{(1-\lambda)\left(z_{1} D_{1}-z_{2} D_{2}\right)(L-R)^{2}}{z_{1} z_{2} H(1)(\ln L-\ln R)}, \tag{4.3}\\
& \rho_{11}=-\frac{\left(\lambda z_{1}-z_{2}\right)\left(z_{1} D_{1}-z_{2} D_{2}\right)(L-R)^{2}}{z_{1} z_{2} H(1)(\ln L-\ln R)^{2}}\left(\frac{(L+R)(\ln L-\ln R)}{L-R}-2\right) .
\end{align*}
$$

The formulas for $I_{0}(V ; 0)$ and $I_{1}(V ; 0)$ then follow easily. The two limits can be shown easily too.

Remark 4.3. The above formulas for $I_{0}(V ; 0)$ and $I_{1}(V ; \lambda, 0)$ agree with those in [43] except for a factor $2 H(1)$. The factor $H(1)$ does not appear in [43] since it is assumed there that $h(x)=1$, and hence, $H(1)=1$. The factor 2 in front of $H(1)$ is due to the fact that we are expending the $I-V$ relation in the diameter d here instead of the radius r in [43]. As we mentioned in the introduction that there is a major difference between the analysis for the local hard sphere in this paper and that for the nonlocal model in [43]. Nevertheless, the agreement on $I_{0}(V ; 0)$ and $I_{1}(V ; \lambda, 0)$ is not a surprise since we are using the local hard sphere potential which is obtained as the expansion in the variable drom the nonlocal one used in [43].

4.1.2 Critical potentials and ion size effects on I-V relations

Based on the approximation of I-V relations in Theorem 4.1, we will identify three critical potentials and discuss their roles in characterizing ion size effects on I-V relations.

Definition 4.4. We define three potentials V_{0}, V_{c} and V^{c} by

$$
I_{0}\left(V_{0} ; 0\right)=0, \quad I_{1}\left(V_{c} ; \lambda, 0\right)=0, \quad \frac{d}{d \lambda} I_{1}\left(V^{c} ; \lambda, 0\right)=0
$$

For ion channels, the reversal potential is defined to be the potential V so that $\mathcal{I}(V ; \lambda, \varepsilon)=0$. Thus, the potential V_{0} is simply the zeroth order approximation in ε and d of the reversal potential. The critical potentials V_{c} and V^{c} are examined for the first time in [43] for a nonlocal hard-sphere model. The significance of the two critical values V_{c} and V^{c} is apparent from their definitions. The value V_{c} is the potential that balances ion size effect on I-V relations and the value V^{c} is the potential that separates the relative size effect on I-V relations. We provide precise statements below. First of all, note that $I_{1}(V ; \lambda, 0)$ is affine in V and in λ. Thus, quantities $\partial_{V} I_{1}(V ; \lambda, 0)$ and V_{c} depend on the boundary conditions $L_{1}, L_{2}, R_{1}, R_{2}$ and the ratio λ of ion sizes only; $\partial_{V \lambda}^{2} I_{1}(V ; \lambda, 0)$ and V^{c} depend on the boundary conditions L_{1}, L_{2}, R_{1}, R_{2} but not on λ.

Theorem 4.5. Suppose $\partial_{V} I_{1}(V ; \lambda, 0)>0\left(\right.$ resp. $\left.\partial_{V} I_{1}(V ; \lambda, 0)<0\right)$.
If $V>V_{c}\left(\right.$ resp $\left.. V<V_{c}\right)$, then, for small $\varepsilon>0$ and $d>0$, the ion sizes enhance the current \mathcal{I}; that is, $\mathcal{I}(V ; \varepsilon, d)>\mathcal{I}(V ; \varepsilon, 0)$;

If $V<V_{c}$ (resp. $V>V_{c}$), then, for small $\varepsilon>0$ and $d>0$, the ion sizes reduce the current \mathcal{I}; that is, $\mathcal{I}(V ; \varepsilon, d)<\mathcal{I}(V ; \varepsilon, 0)$.
Theorem 4.6. Suppose $\partial_{V \lambda}^{2} I_{1}(V ; \lambda, 0)>0\left(\right.$ resp. $\left.\partial_{V \lambda}^{2} I_{1}(V ; \lambda, 0)<0\right)$.
If $V>V^{c}$ (resp. $V<V^{c}$), then, for small $\varepsilon>0$ and $d>0$, the larger the negatively charged ion the larger the current; that is, the current \mathcal{I} is increasing in λ;

If $V<V^{c}$ (resp. $V>V^{c}$), then, for small $\varepsilon>0$ and $d>0$, the smaller the negatively charged ion the larger the current; that is, the current \mathcal{I} is decreasing in λ.

The following result in [43] can be checked easily.
Proposition 4.7. Assume electroneutrality conditions $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=-z_{2} R_{2}=R$, and $L \neq R$. Then,

$$
\partial_{V} I_{1}(V ; \lambda, 0)>0 \text { and } \partial_{V \lambda}^{2} I_{1}(V ; \lambda, 0)>0
$$

As $R \rightarrow L, \partial_{V} I_{1}(V ; \lambda, 0) \rightarrow 0$ and $\partial_{V \lambda}^{2} I_{1}(V ; \lambda, 0)=O\left((L-R)^{2}\right)$.
While both $\partial_{V} I_{1}(V ; \lambda, 0)$ and $\partial_{V \lambda}^{2} I_{1}(V ; \lambda, 0)$ are non-negative under electroneutrality conditions, in general, they can be negative. We do not have a complete result for the general case but the following partial result.
Proposition 4.8. For any $L>0, R_{1}^{*}>0$ and $R_{2}^{*}>0$ with $R_{1}^{*} R_{2}^{*}=L^{2}$, as $\left(R_{1}, R_{2}\right) \rightarrow\left(R_{1}^{*}, R_{2}^{*}\right)$,

$$
\begin{aligned}
\partial_{V} I_{1}(V ; \lambda, 0) & =\frac{e}{k T} \rho_{11}\left(L, L, R_{1}, R_{2} ; \lambda\right) \\
& \rightarrow \frac{e\left(D_{1}+D_{2}\right) L}{4 k T H(1) R_{1}^{*}}\left(R_{1}^{*}-L\right)\left((3+\lambda) R_{1}^{*}-(1+3 \lambda) L\right)
\end{aligned}
$$

The latter is negative if

$$
\begin{aligned}
& \text { either } L<R_{1}^{*}<\frac{1+3 \lambda}{3+\lambda} L \text { for } \lambda>1 \text { or } \frac{1+3 \lambda}{3+\lambda} L<R_{1}^{*}<L \text { for } \lambda<1 . \\
& \text { As }\left(R_{1}, R_{2}\right) \rightarrow\left(R_{1}^{*}, R_{2}^{*}\right), \\
& \partial_{V \lambda} I_{1}(V ; \lambda, 0)=\frac{e}{k T} \partial_{\lambda} \rho_{11}\left(L, L, R_{1}, R_{2} ; \lambda\right) \rightarrow \frac{e\left(D_{1}+D_{2}\right) L}{4 k T H(1) R_{1}^{*}}\left(R_{1}^{*}-L\right)\left(R_{1}^{*}-3 L\right) .
\end{aligned}
$$

The latter is negative if $L<R_{1}^{*}<3 L$.
Proof. For $z_{1}=-z_{2}=1$, we have

$$
\begin{aligned}
\partial_{V} I_{1}(V ; \lambda, 0)= & \frac{e}{k T} \rho_{11}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right), \\
= & \frac{2 e\left(D_{1}+D_{2}\right)}{k T H(1)} \frac{R_{1}^{1 / 2} R_{2}^{1 / 2} w\left(R_{1}, R_{2}\right)-L_{1}^{1 / 2} L_{2}^{1 / 2} w\left(L_{1}, L_{2}\right)}{\ln \left(R_{1} R_{2}\right)-\ln \left(L_{1} L_{2}\right)} \\
& -\frac{2 e(1+\lambda)\left(D_{1}+D_{2}\right)}{k T H(1)} \frac{R_{1} R_{2}-L_{1} L_{2}}{\ln \left(R_{1} R_{2}\right)-\ln \left(L_{1} L_{2}\right)} \\
& -\frac{4 e\left(D_{1}+D_{2}\right)}{k T H(1)} \frac{R_{1}^{1 / 2} R_{2}^{1 / 2}-L_{1}^{1 / 2} L_{2}^{1 / 2}}{\ln \left(R_{1} R_{2}\right)-\ln \left(L_{1} L_{2}\right)} \frac{w\left(R_{1}, R_{2}\right)-w\left(L_{1}, L_{2}\right)}{\ln \left(R_{1} R_{2}\right)-\ln \left(L_{1} L_{2}\right)} .
\end{aligned}
$$

Recall from Theorem 4.1 that, for $z_{1}=-z_{2}=1$,

$$
w(\alpha, \beta)=\alpha+\lambda \beta+\frac{1+\lambda}{2}(\alpha+\beta) .
$$

For fixed $a>0$ and $b>0$, we set

$$
\rho(x, y ; a, b)=\frac{H(1)}{D_{1}+D_{2}} \rho_{11}\left(a^{2}, b^{2} ; x^{2}, y^{2} ; \lambda\right) .
$$

Then, a direct calculation yields

$$
\begin{aligned}
\rho(x, y ; a, b)= & \frac{x y-a b}{\ln (x y)-\ln (a b)} w_{1}\left(x^{2}, y^{2}\right)-(1+\lambda) \frac{x^{2} y^{2}-a^{2} b^{2}}{\ln (x y)-\ln (a b)} \\
& -\frac{x y-a b-a b(\ln (x y)-\ln (a b))}{(\ln (x y)-\ln (a b))^{2}}\left(w_{1}\left(x^{2}, y^{2}\right)-w_{1}\left(a^{2}, b^{2}\right)\right) .
\end{aligned}
$$

Note that, as $z=x y \rightarrow a b$,

$$
\frac{z-a b}{\ln z-\ln (a b)} \rightarrow a b, \quad \frac{z-a b-a b(\ln z-\ln (a b))}{(\ln z-\ln (a b))^{2}} \rightarrow \frac{a b}{2}, \quad \frac{z^{2}-a^{2} b^{2}}{\ln z-\ln (a b)} \rightarrow 2 a^{2} b^{2} .
$$

Thus, as $x \rightarrow x_{0}$ and $y \rightarrow y_{0}$ with $x_{0} y_{0}=a b$,

$$
\begin{aligned}
\rho(x, y ; a, b) & \rightarrow a b w_{1}\left(x_{0}^{2}, y_{0}^{2}\right)-\frac{a b}{2}\left(w_{1}\left(x_{0}^{2}, y_{0}^{2}\right)-w_{1}\left(a^{2}, b^{2}\right)\right)-2(1+\lambda) a^{2} b^{2} \\
& =\frac{a b}{2}\left(w_{1}\left(x_{0}^{2}, y_{0}^{2}\right)+w_{1}\left(a^{2}, b^{2}\right)\right)-2(1+\lambda) a^{2} b^{2} \\
& =\frac{a b}{2}\left(w_{1}\left(x_{0}^{2}, y_{0}^{2}\right)+w_{1}\left(a^{2}, b^{2}\right)-4(1+\lambda) a b\right) \\
& =\frac{a b}{2}\left(\frac{3+\lambda}{2} x_{0}^{2}+\frac{1+3 \lambda}{2} y_{0}^{2}+\frac{3+\lambda}{2} a^{2}+\frac{1+3 \lambda}{2} b^{2}-4(1+\lambda) a b\right) \\
& =\frac{a b}{2 x_{0}^{2}}\left(\frac{3+\lambda}{2} x_{0}^{4}+\left(\frac{3+\lambda}{2} a^{2}+\frac{1+3 \lambda}{2} b^{2}-4(1+\lambda) a b\right) x_{0}^{2}+\frac{1+3 \lambda}{2} a^{2} b^{2}\right) .
\end{aligned}
$$

In particular, for $a=b$, as $x \rightarrow x_{0}$ and $y \rightarrow y_{0}$ with $x_{0} y_{0}=a^{2}$,

$$
\begin{aligned}
\rho(x, y ; a, a) & \rightarrow \frac{a^{2}}{2 x_{0}^{2}}\left(\frac{3+\lambda}{2} x_{0}^{4}-2(1+\lambda) a^{2} x_{0}^{2}+\frac{1+3 \lambda}{2} a^{4}\right) \\
& =\frac{a^{2}}{2 x_{0}^{2}}\left(x_{0}^{2}-a^{2}\right)\left(\frac{3+\lambda}{2} x_{0}^{2}-\frac{1+3 \lambda}{2} a^{2}\right) .
\end{aligned}
$$

The latter is negative if

$$
\text { either } a<x_{0}<\sqrt{\frac{1+3 \lambda}{3+\lambda}} a \text { for } \lambda>1 \text { or } \sqrt{\frac{1+3 \lambda}{3+\lambda}} a<x_{0}<a \text { for } \lambda<1 \text {. }
$$

It can be directly translated to the statements for ρ_{11} and $\partial_{\lambda} \rho_{11}$.
In the rest of this part, we discuss a number of properties of the critical potentials. It follows from Definition 4.4 and Theorem 4.1 that

Proposition 4.9. The potentials V_{0}, V_{c} and V^{c} have the following expressions

$$
\begin{gathered}
V_{0}:=V_{0}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)=-\frac{k T}{e} \frac{\rho_{00}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)}{\rho_{01}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)}, \\
V_{c}:=V_{c}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)=-\frac{k T}{e} \frac{\rho_{10}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)}{\rho_{11}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)}, \\
V^{c}:=V^{c}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)=-\frac{k T}{e} \frac{\rho_{10, \lambda}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)}{\rho_{11, \lambda}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)} .
\end{gathered}
$$

Remark 4.10. The critical potentials V_{0}, V_{c} and V^{c} are independent of the crosssection area $h(x)$ of the channel.

When electroneutrality conditions $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=-z_{2} R_{2}=R$ hold, we write

$$
\begin{aligned}
V_{0}(L, R) & :=V_{0}\left(L_{1}, L_{2}, R_{1}, R_{2}\right), \\
V_{c}(L, R ; \lambda) & :=V_{c}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right), \\
V^{c}(L, R ; \lambda) & :=V^{c}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right) .
\end{aligned}
$$

Corollary 4.11. Assume the electroneutrality boundary conditions $z_{1} L_{1}=-z_{2} L_{2}=$ L and $z_{1} R_{1}=-z_{2} R_{2}=R$. Then, we have

$$
\begin{aligned}
V_{0}(L, R) & =\frac{k T}{e} \frac{\left(D_{1}-D_{2}\right)}{z_{1} D_{1}-z_{2} D_{2}} \ln \frac{R}{L}, \\
V_{c}(L, R ; \lambda) & =\frac{k T}{e} \frac{\lambda-1}{\lambda z_{1}-z_{2}} f\left(\frac{L}{R}\right)-\frac{k T}{e} \frac{D_{1}-D_{2}}{z_{1} D_{1}-z_{2} D_{2}} g\left(\frac{L}{R}\right), \text { if } L \neq R, \\
V^{c}(L, R ; \lambda) & =\frac{k T}{e} \frac{1}{z_{1}} f\left(\frac{L}{R}\right)-\frac{k T}{e} \frac{D_{1}-D_{2}}{z_{1} D_{1}-z_{2} D_{2}} g\left(\frac{L}{R}\right), \text { if } L \neq R,
\end{aligned}
$$

where, for $x>0$,

$$
\begin{equation*}
f(x)=\frac{(x-1) \ln x}{(1+x) \ln x-2(x-1)}, \quad g(x)=\frac{(1+x)(\ln x)^{2}}{(1+x) \ln x-2(x-1)} . \tag{4.4}
\end{equation*}
$$

Proof. The formulas follow directly from Proposition 4.9 and display (4.3).
Lemma 4.12. For the functions f and g defined in (4.4), one has
(i) $f(x)=-f(1 / x)$ and $g(x)=-g(1 / x)$;
(ii) $\lim _{x \rightarrow 1^{+}} f(x) \ln x=6, \lim _{x \rightarrow \infty} f(x)=1$, and $f^{\prime}(x)<0$ for $x>1$;
(iii) $\lim _{x \rightarrow 1^{+}} g(x) \ln x=12, \lim _{x \rightarrow \infty} \frac{g(x)}{\ln x}=1$, and $g(x)$ has a unique positive minimum in $(1, \infty)$.

Proof. The verifications of these properties are elementary.
As a direct consequence of Corollary 4.11 and Lemma 4.12, one has
Corollary 4.13. Assume the electroneutrality boundary conditions $z_{1} L_{1}=-z_{2} L_{2}=$ L and $z_{1} R_{1}=-z_{2} R_{2}=R$. Then,
(i) $V_{0}(L, R)=-V_{0}(R, L), V_{c}(L, R ; \lambda)=-V_{c}(R, L ; \lambda), V^{c}(L, R ; \lambda)=-V^{c}(R, L ; \lambda)$;
(ii) for $L \geq R, V_{0}(L, R)$ is decreasing (resp. increasing) in L if $D_{1}>D_{2}$ (resp. $D_{1}<D_{2}$, and, for fixed $R>0, \lim _{L \rightarrow R} V_{0}(L, R)=0 ;$
(iii) for fixed $R>0$,

$$
\begin{align*}
& \lim _{L \rightarrow R} V_{c}(L, R ; \lambda)(\ln L-\ln R)=\frac{k T}{e}\left(\frac{6(\lambda-1)}{\lambda z_{1}-z_{2}}-\frac{12\left(D_{1}-D_{2}\right)}{z_{1} D_{1}-z_{2} D_{2}}\right) \\
& \lim _{L \rightarrow R} V^{c}(L, R ; \lambda)(\ln L-\ln R)=\frac{k T}{e} \frac{6 z_{1}\left(D_{2}-D_{1}\right)+6\left(z_{1}-z_{2}\right) D_{2}}{z_{1}\left(z_{1} D_{1}-z_{2} D_{2}\right)} \tag{4.5}\\
& \lim _{L \rightarrow \infty} \frac{V_{c}(L, R ; \lambda)}{\ln L-\ln R}=\lim _{L \rightarrow \infty} \frac{V^{c}(L, R ; \lambda)}{\ln L-\ln R}=-\frac{k T}{e} \frac{D_{1}-D_{2}}{z_{1} D_{1}-z_{2} D_{2}}
\end{align*}
$$

(iv) $V^{c}(L, R ; \lambda)-V_{c}(L, R ; \lambda)=\frac{k T}{e} \frac{z_{1}-z_{2}}{z_{1}\left(\lambda z_{1}-z_{2}\right)} f\left(\frac{L}{R}\right)$, and hence, for fixed $R>0$,

$$
\begin{aligned}
& \lim _{L \rightarrow R}\left(V^{c}(L, R ; \lambda)-V_{c}(L, R ; \lambda)\right)(\ln L-\ln R)=\frac{k T}{e} \frac{6\left(z_{1}-z_{2}\right)}{z_{1}\left(\lambda z_{1}-z_{2}\right)} \\
& \lim _{L \rightarrow \infty}\left(V^{c}(L, R ; \lambda)-V_{c}(L, R ; \lambda)\right)=1 .
\end{aligned}
$$

4.1.3 Scaling laws

Next result concerns the dependences of $I_{0}, I_{1}, V_{0}, V_{c}$ and V^{c} on the boundary concentrations. For this discussion, we include the boundary conditions in the arguments of $I_{0}, I_{1}, V_{0}, V_{c}$ and V^{c}; for example, we write I_{0} as $I_{0}\left(V ; L_{1}, L_{2}, R_{1}, R_{2}\right)$, etc..

Theorem 4.14. The following scaling laws hold,
(i) I_{0} scales linearly in boundary concentrations, that is, for any $s>0$,

$$
I_{0}\left(V ; s L_{1}, s L_{2}, s R_{1}, s R_{2}\right)=s I_{0}\left(V ; L_{1}, L_{2}, R_{1}, R_{2}\right)
$$

(ii) $I_{1}\left(V ; s L_{1}, s L_{2}, s R_{1}, s R_{2}\right)$ scales quadratically in boundary concentrations, that is, for any $s>0$,

$$
I_{1}\left(V ; s L_{1}, s L_{2}, s R_{1}, s R_{2}\right)=s^{2} I_{1}\left(V ; L_{1}, L_{2}, R_{1}, R_{2}\right)
$$

(iii) V_{0}, V_{c} and V^{c} are invariant under scaling in boundary concentrations, that is, for any $s>0$,

$$
\begin{aligned}
V_{0}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}\right) & =V_{0}\left(L_{1}, L_{2}, R_{1}, R_{2}\right), \\
V_{c}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}\right) & =V_{c}\left(L_{1}, L_{2}, R_{1}, R_{2}\right) \\
V^{c}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}\right) & =V^{c}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)
\end{aligned}
$$

Proof. A direct observation gives

$$
\begin{aligned}
\rho_{00}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}\right) & =s \rho_{00}\left(L_{1}, L_{2}, R_{1}, R_{2}\right), \\
\rho_{01}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}\right) & =s \rho_{01}\left(L_{1}, L_{2}, R_{1}, R_{2}\right), \\
\rho_{10}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}, \lambda\right) & =s^{2} \rho_{10}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right), \\
\rho_{11}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}, \lambda\right) & =s^{2} \rho_{11}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right) .
\end{aligned}
$$

The above scaling laws then follow from Theorem 4.1 and Proposition 4.9.
Remark 4.15. (i) Note that I_{0} and V_{0} are not linear in boundary concentrations, and I_{1}, V_{c} and V^{c} are not quadratic in boundary concentrations.
(ii) Recall, from (4.1), that the zeroth order in ε and first order in d approximation of the I - V relation $\mathcal{I}(V ; \lambda, \varepsilon, d)$ is $I_{0}+I_{1} d$. Since I_{0} and I_{1} scale differently in boundary concentrations, the approximation $I_{0}+I_{1} d$ does not have a simple scaling law.
(iii) It follows from the scaling laws for I_{0} and I_{1} that, at higher ion concentrations, the ion size effect becomes more significant. This is well expected. On the other hand, our scaling law results reveal a concrete way on how the ion size effect is manifested as the concentrations increase.

4.2 The flow rate \mathcal{T} of matter

In this part, we briefly discuss ion size effects on the rate \mathcal{T}. Recall from (2.4) that The flow rate \mathcal{T} of matter is

$$
\mathcal{T}(V ; \lambda, \varepsilon, d)=\mathcal{J}_{1}+\mathcal{J}_{2}=D_{1} J_{1}+D_{2} J_{2}
$$

We have the following observation. Note that J_{1} and J_{2} are independent of D_{1} and D_{2}. We will indicate the dependence of \mathcal{T} and \mathcal{I} on D_{1} and D_{2} explicitly and omit their dependences on other variables; that is, we denote the current $\mathcal{I}(V ; \lambda, \varepsilon, d)$ in Section 4.1 by $\mathcal{I}\left(D_{1}, D_{2}\right)$, and $\mathcal{T}(V ; \lambda, \varepsilon, d)$ by $\mathcal{T}\left(D_{1}, D_{2}\right)$. Then,

$$
\begin{equation*}
\mathcal{T}\left(D_{1}, D_{2}\right)=D_{1} J_{1}+D_{2} J_{2}=z_{1} \frac{D_{1}}{z_{1}} J_{1}+z_{2} \frac{D_{2}}{z_{2}} J_{2}=\mathcal{I}\left(\frac{D_{1}}{z_{1}}, \frac{D_{2}}{z_{2}}\right) . \tag{4.6}
\end{equation*}
$$

Therefore, all results in Section 4.1 on the current \mathcal{I} can be translated to results on \mathcal{T} by replacing D_{1} and D_{2} in Section 4.1 with D_{1} / z_{1} and D_{2} / z_{2}, respectively. We will thus collect the results related to \mathcal{T} only.

Similar to the expression for \mathcal{I} in Section 4.1, we express \mathcal{T} as

$$
\begin{equation*}
\mathcal{T}(V ; \lambda, \varepsilon, d)=T_{0}(V ; \varepsilon)+T_{1}(V ; \lambda, \varepsilon) d+o(d) \tag{4.7}
\end{equation*}
$$

Theorem 4.16. In the expression (4.7), one has

$$
\begin{aligned}
& T_{0}(V ; 0)=D_{1} J_{10}+D_{2} J_{20}=\sigma_{00}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)+\sigma_{01}\left(L_{1}, L_{2}, R_{1}, R_{2}\right) \frac{e}{k T} V, \\
& T_{1}(V ; \lambda, 0)=D_{1} J_{11}+D_{2} J_{21}=\sigma_{10}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)+\sigma_{11}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right) \frac{e}{k T} V,
\end{aligned}
$$

where

$$
\begin{aligned}
\sigma_{00}= & \frac{\left(z_{2} D_{1}-z_{1} D_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{z_{2} H(1)}+\frac{z_{1}\left(D_{1}-D_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{H(1)\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)}\left(\ln \left(L_{1} R_{2}\right)-\ln \left(L_{2} R_{1}\right)\right), \\
\sigma_{01}= & \frac{z_{1}\left(D_{1}-D_{2}\right)\left(c_{10}^{L}-c_{10}^{R}\right)}{H(1)\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)}, \\
\sigma_{10}= & \frac{z_{2} D_{1}-z_{1} D_{2}}{z_{2} H(1)}\left[c_{10}^{L} w\left(L_{1}, L_{2}\right)-c_{10}^{R} w\left(R_{1}, R_{2}\right)+\frac{\lambda z_{1}-z_{2}}{z_{2}}\left(\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}\right)\right] \\
& -\frac{z_{1}\left(D_{1}-D_{2}\right)}{H(1)}\left[\frac{1-\lambda}{z_{2}} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}}-\frac{c_{10}^{L}-c_{10}^{R}}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\phi_{1}^{L}-\phi_{1}^{R}\right)\right] \\
& +\frac{z_{1}\left(D_{1}-D_{2}\right)}{\left(z_{1}-z_{2}\right) H(1)} \frac{c_{10}^{L} w\left(L_{1}, L_{2}\right)-c_{10}^{R} w\left(R_{1}, R_{2}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\ln \left(L_{1} R_{2}\right)-\ln \left(L_{2} R_{1}\right)\right) \\
& +\frac{z_{1}\left(\lambda z_{1}-z_{2}\right)\left(D_{1}-D_{2}\right)}{\left(z_{1}-z_{2}\right) z_{2} H(1)} \frac{\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}}\left(\ln \left(L_{1} R_{2}\right)-\ln \left(L_{2} R_{1}\right)\right) \\
& \left.-\frac{z_{1}\left(D_{1}-D_{2}\right)}{\left(z_{1}-z_{2}\right) H(1)} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)\left(w\left(L_{1}, L_{2}\right)-w\left(R_{1}, R_{2}\right)\right)}{\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)^{2}}\left(\ln _{1} R_{2}\right)-\ln \left(L_{2} R_{1}\right)\right), \\
& \sigma_{11}=\frac{z_{1}\left(D_{1}-D_{2}\right)}{H(1)} \frac{c_{10}^{L} w\left(L_{1}, L_{2}\right)-c_{10}^{R} w\left(R_{1}, R_{2}\right)}{\ln c_{10}^{L}-\ln c_{10}^{R}} \\
& +\frac{z_{1}\left(\lambda z_{1}-z_{2}\right)\left(D_{1}-D_{2}\right)}{z_{2} H(1)} \frac{\left(c_{10}^{L}\right)^{2}-\left(c_{10}^{R}\right)^{2}}{\ln c_{10}^{L}-\ln c_{10}^{R}} \\
& \quad-\frac{z_{1}\left(D_{1}-D_{2}\right)}{H(1)} \frac{\left(c_{10}^{L}-c_{10}^{R}\right)\left(w\left(L_{1}, L_{2}\right)-w\left(R_{1}, R_{2}\right)\right)}{\left(\ln c_{10}^{L}-\ln c_{10}^{R}\right)^{2}} .
\end{aligned}
$$

Definition 4.17. Define three potentials \hat{V}_{0}, \hat{V}_{c} and \hat{V}^{c} by

$$
T_{0}\left(\hat{V}_{0} ; 0\right)=0, \quad T_{1}\left(\hat{V}_{c} ; \lambda, 0\right)=0, \quad \frac{d}{d \lambda} T_{1}\left(\hat{V}^{c} ; \lambda, 0\right)=0 .
$$

It follows from the definition that
Proposition 4.18. The potentials \hat{V}_{0}, \hat{V}_{c} and \hat{V}^{c} have the following expressions

$$
\begin{aligned}
\hat{V}_{0} & =-\frac{k T}{e} \frac{\sigma_{00}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)}{\sigma_{01}\left(L_{1}, L_{2}, R_{1}, R_{2}\right)} \\
\hat{V}_{c} & =-\frac{k T}{e} \frac{\sigma_{10}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)}{\sigma_{11}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)} \\
\hat{V}^{c} & =-\frac{k T}{e} \frac{\sigma_{10, \lambda}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)}{\sigma_{11, \lambda}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right)}
\end{aligned}
$$

We have the following scaling laws:
Theorem 4.19. For any $s>0$,

$$
\begin{aligned}
\sigma_{00}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}\right) & =s \sigma_{00}\left(L_{1}, L_{2}, R_{1}, R_{2}\right), \\
\sigma_{01}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}\right) & =s \sigma_{01}\left(L_{1}, L_{2}, R_{1}, R_{2}\right), \\
\sigma_{10}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}, \lambda\right) & =s^{2} \sigma_{10}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right), \\
\sigma_{11}\left(s L_{1}, s L_{2}, s R_{1}, s R_{2}, \lambda\right) & =s^{2} \sigma_{11}\left(L_{1}, L_{2}, R_{1}, R_{2} ; \lambda\right) .
\end{aligned}
$$

As a consequence, $T_{0}(V ; 0)$ scales linearly in boundary concentrations and $T_{1}(V ; \lambda, 0)$ scales quadratically in boundary concentrations, and the values \hat{V}_{0}, \hat{V}_{c} and \hat{V}^{c} are invariant under scaling in boundary concentrations.

Theorem 4.20. Suppose $\partial_{V} T_{1}(V ; \lambda, 0)>0\left(\right.$ resp. $\left.\partial_{V} T_{1}(V ; \lambda, 0)<0\right)$.
If $V>\hat{V}_{c}$ (resp. $V<\hat{V}_{c}$), then, for small $\varepsilon>0$ and $d>0$, the ion sizes enhance \mathcal{T}; that is, $\mathcal{T}(V ; \varepsilon, d)>\mathcal{T}(V ; \varepsilon, 0)$;

If $V<\hat{V}_{c}$ (resp. $V>\hat{V}_{c}$), then, for small $\varepsilon>0$ and $d>0$, the ion sizes reduce \mathcal{T}; that is, $\mathcal{T}(V ; \varepsilon, d)<\mathcal{T}(V ; \varepsilon, 0)$.

Theorem 4.21. Suppose $\partial_{V \lambda}^{2} T_{1}(V ; \lambda, 0)>0\left(\right.$ resp. $\left.\partial_{V \lambda}^{2} T_{1}(V ; \lambda, 0)<0\right)$.
If $V>\hat{V}^{c}$ (resp. $V<\hat{V}^{c}$), then, for small $\varepsilon>0$ and $d>0$, the larger the negatively charged ion the larger \mathcal{T}; that is, \mathcal{T} increases λ;

If $V<\hat{V}^{c}$ (resp. $V>\hat{V}^{c}$), then, for small $\varepsilon>0$ and $d>0$, the smaller the negatively charged ion the larger \mathcal{T}; that is, \mathcal{T} decreases λ.

Corollary 4.22. Assume the electroneutrality conditions $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=-z_{2} R_{2}=R$, and $L \neq R$. Then

$$
\begin{aligned}
T_{0}(V ; 0)= & \frac{\left(z_{2} D_{1}-z_{1} D_{2}\right)(L-R)}{z_{1} z_{2} H(1)}+\frac{\left(D_{1}-D_{2}\right)(L-R)}{H(1)(\ln L-\ln R)} \frac{e}{k T} V, \\
T_{1}(V ; \lambda, 0)= & \frac{\left(\lambda z_{1}-z_{2}\right)\left(z_{2} D_{2}-z_{1} D_{1}\right)\left(L^{2}-R^{2}\right)}{z_{1}^{2} z_{2}^{2} H(1)}-\frac{(1-\lambda)\left(D_{1}-D_{2}\right)(L-R)^{2}}{z_{1} z_{2} H(1)(\ln L-\ln R)} \\
& -\frac{\left(\lambda z_{1}-z_{2}\right)\left(D_{1}-D_{2}\right)(L-R)^{2}}{z_{1} z_{2} H(1)(\ln L-\ln R)^{2}}\left(\frac{(L+R)(\ln L-\ln R)}{L-R}-2\right) \frac{e}{k T} V .
\end{aligned}
$$

and hence,

$$
\begin{aligned}
\hat{V}_{0}= & \frac{k T}{e} \frac{\left(z_{2} D_{1}-z_{1} D_{2}\right)(\ln R-\ln L)}{z_{1} z_{2}\left(D_{1}-D_{2}\right)}, \\
\hat{V}_{c}= & \frac{k T}{e} \frac{(\lambda-1)(\ln L-\ln R)(L-R)}{\left(\lambda z_{1}-z_{2}\right)[(\ln L-\ln R)(L+R)-2(L-R)]} \\
& -\frac{k T}{e} \frac{\left(z_{2} D_{1}-z_{1} D_{2}\right)(\ln L-\ln R)^{2}(L+R)}{z_{1} z_{2}\left(D_{1}-D_{2}\right)[(\ln L-\ln R)(L+R)-2(L-R)]}, \\
\hat{V}^{c}= & \frac{k T}{e} \frac{(\ln L-\ln R)(L-R)}{z_{1}[(\ln L-\ln R)(L+R)-2(L-R)]} \\
& -\frac{k T}{e} \frac{\left(z_{2} D_{1}-z_{1} D_{2}\right)(\ln L-\ln R)^{2}(L+R)}{z_{1} z_{2}\left(D_{1}-D_{2}\right)[(\ln L-\ln R)(L+R)-2(L-R)]} .
\end{aligned}
$$

Note also that, under electroneutrality conditions,

$$
\begin{aligned}
\partial_{V} T_{1}(V ; \lambda, 0) & =-\frac{e\left(\lambda z_{1}-z_{2}\right)\left(D_{1}-D_{2}\right)(L-R)^{2}}{z_{1} z_{2} k T H(1)(\ln L-\ln R)^{2}}\left(\frac{(L+R)(\ln L-\ln R)}{L-R}-2\right) \\
\partial_{V \lambda} T_{1}(V ; \lambda, 0) & =-\frac{\left(D_{1}-D_{2}\right)(L-R)^{2}}{z_{2} H(1)(\ln L-\ln R)^{2}}\left(\frac{(L+R)(\ln L-\ln R)}{L-R}-2\right) \frac{e}{k T} .
\end{aligned}
$$

Proposition 4.23. Assume electroneutrality conditions $z_{1} L_{1}=-z_{2} L_{2}=L$ and $z_{1} R_{1}=-z_{2} R_{2}=R$, and $L \neq R$. If $D_{1}>D_{2}$, then

$$
\partial_{V} T_{1}(V ; \lambda, 0)>0 \text { and } \partial_{V \lambda}^{2} T_{1}(V ; \lambda, 0)>0
$$

if $D_{1}<D_{2}$, then

$$
\partial_{V} T_{1}(V ; \lambda, 0)<0 \text { and } \partial_{V \lambda}^{2} T_{1}(V ; \lambda, 0)<0
$$

In either case, as $R \rightarrow L$,

$$
\partial_{V} T_{1}(V ; \lambda, 0) \rightarrow 0 \text { and } \partial_{V \lambda}^{2} T_{1}(V ; \lambda, 0)=O\left((L-R)^{2}\right) .
$$

Proof. It can be checked directly or follows from Theorem 4.7 and the relation (4.6) between T_{1} and I_{1}.

In general, $\partial_{V} T_{1}(V ; \lambda, 0)$ and $\partial_{V \lambda}^{2} T_{1}(V ; \lambda, 0)$ can be negative (resp. positive) for $D_{1}>D_{2}$ (resp. $D_{1}<D_{2}$). In particular, we have

Proposition 4.24. For $z_{1}=-z_{2}=1$ and for any $L>0, R_{1}^{*}>0$ and $R_{2}^{*}>0$ with $R_{1}^{*} R_{2}^{*}=L^{2}$, as $\left(R_{1}, R_{2}\right) \rightarrow\left(R_{1}^{*}, R_{2}^{*}\right)$,

$$
\begin{equation*}
\partial_{V} T_{1}(V ; \lambda, 0) \rightarrow \frac{\left(D_{1}-D_{2}\right) L}{4 H(1) R_{1}^{*}}\left(R_{1}^{*}-L\right)\left((3+\lambda) R_{1}^{*}-(1+3 \lambda) L\right) . \tag{4.8}
\end{equation*}
$$

For $D_{1}>D_{2}$ (resp. $D_{1}<D_{2}$), the limit is negative (resp. positive) if

$$
\text { either } L<R_{1}^{*}<\frac{1+3 \lambda}{3+\lambda} L \text { for } \lambda>1 \text { or } \frac{1+3 \lambda}{3+\lambda} L<R_{1}^{*}<L \text { for } \lambda<1 \text {. }
$$

As $\left(R_{1}, R_{2}\right) \rightarrow\left(R_{1}^{*}, R_{2}^{*}\right)$,

$$
\partial_{V \lambda} T_{1}(V ; \lambda, 0) \rightarrow \frac{\left(D_{1}-D_{2}\right) L}{4 H(1) R_{1}^{*}}\left(R_{1}^{*}-L\right)\left(R_{1}^{*}-3 L\right) .
$$

For $D_{1}>D_{2}$ (resp. $D_{1}<D_{2}$), the limit is negative (resp. positive) if $L<R_{1}^{*}<3 L$.
Proof. It follows from Theorem 4.8 and the relation (4.6) between T_{1} and I_{1}.

Acknowledgments

GL was partially supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (11XN1004). GL is grateful to School of Mathematics at Georgia Institute of Technology for its hospitality during his one-year visit. WL was partially supported by NSF Grant DMS0807327 and an Auqing Tang Professorship from Jilin University. YY was partially supported by NSF Grants DMS0708331, DMS1109201 and a Scholarship from Jilin University. MZ was partially supported by NSF Grant DMS-0807327.

5 Appendix: The local hard-sphere model $\mu_{i}^{L H S}$ in (2.6)

We will derive the local hard-sphere model $\mu_{i}^{L H S}$ in (2.6) as an approximation for a well-known nonlocal hard sphere model used in [43]. Recall that, for one-dimensional space case, one has $([24,62,63,64,65,66])$ the following formula for the hard-sphere (hard-rod) potential

$$
\begin{equation*}
\mu_{i}^{H S}=\frac{\delta \Omega\left(\left\{c_{j}\right\}\right)}{\delta c_{i}} \tag{5.9}
\end{equation*}
$$

where

$$
\begin{align*}
& \Omega\left(\left\{c_{j}\right\}\right)=-\int n_{0}\left(x ;\left\{c_{j}\right\}\right) \ln \left[1-n_{1}\left(x ;\left\{c_{j}\right\}\right)\right] d x \\
& n_{l}\left(x,\left\{c_{j}\right\}\right)=\sum_{j=1}^{n} \int c_{j}\left(x^{\prime}\right) \omega_{l}^{j}\left(x-x^{\prime}\right) d x^{\prime}, \quad(l=0,1), \tag{5.10}\\
& \omega_{0}^{j}(x)=\frac{\delta\left(x-r_{j}\right)+\delta\left(x+r_{j}\right)}{2}, \quad \omega_{l}^{j}(x)=\Theta\left(r_{j}-|x|\right),
\end{align*}
$$

where δ is the Dirac function, Θ is the Heaviside function, and $r_{j}=d_{j} / 2$ is the radius of j th ion species.

In Lemma 4.1 of [43], it is shown that

$$
\begin{align*}
\mu_{i}^{H S}(x)= & -\frac{k T}{2} \ln \left(\left(1-\sum_{j} \int_{x-r_{i}-r_{j}}^{x-r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime}\right)\left(1-\sum_{j} \int_{x+r_{i}-r_{j}}^{x+r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime}\right)\right) \\
& +\frac{k T}{2} \int_{x-r_{i}}^{x+r_{i}} \frac{\sum_{j}\left(c_{j}\left(x^{\prime}-r_{j}\right)+c_{j}\left(x^{\prime}+r_{j}\right)\right)}{1-\sum_{j} \int_{x^{\prime}+r_{j}}^{x_{j}+r_{j}} c_{j}\left(x^{\prime \prime}\right) d x^{\prime \prime}} d x^{\prime} . \tag{5.11}
\end{align*}
$$

For the first term

$$
\ln \left(\left(1-\sum_{j} \int_{x-r_{i}-r_{j}}^{x-r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime}\right)\left(1-\sum_{j} \int_{x+r_{i}-r_{j}}^{x+r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime}\right)\right),
$$

we expand $c_{j}\left(x^{\prime}\right)$ at $x^{\prime}=x$

$$
c_{j}\left(x^{\prime}\right)=c_{j}(x)+c_{j}^{\prime}(x)\left(x^{\prime}-x\right)+O\left(\left(x^{\prime}-x\right)^{2}\right) .
$$

This gives

$$
\begin{aligned}
\sum_{j} \int_{x-r_{i}-r_{j}}^{x-r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime} & =\sum_{j} \int_{x-r_{i}-r_{j}}^{x-r_{i}+r_{j}}\left(c_{j}(x)+c_{j}^{\prime}(x)\left(x^{\prime}-x\right)+O\left(\left(x^{\prime}-x\right)^{2}\right)\right) d x^{\prime} \\
& =\sum_{j}\left(2 r_{j} c_{j}(x)-2 r_{i} r_{j} c_{j}^{\prime}(x)+O\left(2 r_{j} r_{i}^{2}+\frac{2}{3} r_{j}^{3}\right)\right) \\
& =\sum_{j} 2 r_{j} c_{j}(x)+O\left(r^{2}\right),
\end{aligned}
$$

where $r=\min \left\{r_{1}, r_{2}\right\}$. Similarly, one has

$$
\sum_{j} \int_{x+r_{i}-r_{j}}^{x+r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime}=\sum_{j} 2 r_{j} c_{j}(x)+O\left(r^{2}\right)
$$

Therefore, the first term in $\mu_{i}^{H S}(x)$ becomes

$$
\begin{align*}
& -\frac{k T}{2} \ln \left(\left(1-\sum_{j} \int_{x-r_{i}-r_{j}}^{x-r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime}\right)\left(1-\sum_{j} \int_{x+r_{i}-r_{j}}^{x+r_{i}+r_{j}} c_{j}\left(x^{\prime}\right) d x^{\prime}\right)\right) \\
= & -\frac{k T}{2} \ln \left(\left(1-\sum_{j} 2 r_{j} c_{j}(x)+O\left(r^{2}\right)\right)\left(1-\sum_{j} 2 r_{j} c_{j}(x)+O\left(r^{2}\right)\right)\right) \tag{5.12}\\
= & -k T \ln \left(1-\sum_{j} 2 r_{j} c_{j}(x)+O\left(r^{2}\right)\right) .
\end{align*}
$$

For the second term

$$
\frac{k T}{2} \int_{x-r_{i}}^{x+r_{i}} \frac{\sum_{j}\left(c_{j}\left(x^{\prime}-r_{j}\right)+c_{j}\left(x^{\prime}+r_{j}\right)\right)}{1-\sum_{j} \int_{x^{\prime}-r_{j}}^{x^{\prime}+r_{j}} c_{j}\left(x^{\prime \prime}\right) d x^{\prime \prime}} d x^{\prime}
$$

we first expand the numerator of the integrand at x to get

$$
\sum_{j}\left(c_{j}\left(x^{\prime}-r_{j}\right)+c_{j}\left(x^{\prime}+r_{j}\right)\right)=2 \sum_{j}\left(c_{j}(x)+c_{j}^{\prime}(x)\left(x^{\prime}-x\right)+O\left(\left(x-x^{\prime}\right)^{2}\right)\right) .
$$

Expanding the summation term in the denominator first at x^{\prime} and then at x, we have

$$
\begin{aligned}
\sum_{j} \int_{x^{\prime}-r_{j}}^{x^{\prime}+r_{j}} c_{j}\left(x^{\prime \prime}\right) d x^{\prime \prime} & =\sum_{j} \int_{x^{\prime}-r_{j}}^{x^{\prime}+r_{j}}\left(c_{j}\left(x^{\prime}\right)+c_{j}^{\prime}\left(x^{\prime}\right)\left(x^{\prime \prime}-x^{\prime}\right)+O\left(\left(x^{\prime \prime}-x^{\prime}\right)^{2}\right)\right) d x^{\prime \prime} \\
& =\sum_{j}\left(2 r_{j} c_{j}\left(x^{\prime}\right)+O\left(r^{3}\right)\right) \\
& =\sum_{j} 2 r_{j}\left(c_{j}(x)+c_{j}^{\prime}(x)\left(x^{\prime}-x\right)+O\left(\left(x^{\prime}-x\right)^{2}\right)+O\left(r^{3}\right)\right) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\frac{k T}{2} \int_{x-r_{i}}^{x+r_{i}} \frac{\sum_{j}\left(c_{j}\left(x^{\prime}-r_{j}\right)+c_{j}\left(x^{\prime}+r_{j}\right)\right)}{1-\sum_{j} \int_{x^{\prime}-r_{j}}^{x^{\prime}+r_{j}} c_{j}\left(x^{\prime \prime}\right) d x^{\prime \prime}} d x^{\prime}=k T \frac{2 r_{i} \sum_{j} c_{j}(x)}{1-\sum_{j} 2 r_{j} c_{j}(x)}+O\left(r^{2}\right) . \tag{5.13}
\end{equation*}
$$

Ignoring the higher order terms, the nonlocal hard sphere model $\mu_{i}^{H S}(x)$ in (5.11) with (5.12) and (5.13) gives the local hard sphere model $\mu_{i}^{L H S}(x)$ in (2.6).

References

[1] N. Abaid, R. S. Eisenberg, and W. Liu, Asymptotic expansions of I-V relations via a Poisson-Nernst-Planck system. SIAM J. Appl. Dyn. Syst. 7 (2008), 1507-1526.
[2] S. Aboud, D. Marreiro, M. Saraniti, and R. S. Eisenberg, A Poisson P3M Force Field Scheme for Particle-Based Simulations of Ionic Liquids. J. Comput. Electronics 3 (2004), 117-133.
[3] V. Barcilon, Ion flow through narrow membrane channels: Part I. SIAM J. Appl. Math. 52 (1992), 1391-1404.
[4] V. Barcilon, D.-P. Chen, and R. S. Eisenberg, Ion flow through narrow membrane channels: Part II. SIAM J. Appl. Math. 52 (1992), 1405-1425.
[5] V. Barcilon, D.-P. Chen, R. S. Eisenberg, and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study. SIAM J. Appl. Math. 57 (1997), 631-648.
[6] J. J. Bikerman, Structure and capacity of the electrical double layer. Philos. Mag. 33 (1942), 384.
[7] D. Boda, D. Gillespie, W. Nonner, D. Henderson, and B. Eisenberg, Computing induced charges in inhomogeneous dielectric media: application in a Monte Carlo simulation of complex ionic systems. Phys. Rev. E 69 (2004), 046702 (1-10).
[8] D. Boda, D. Busath, B. Eisenberg, D. Henderson, and W. Nonner, Monte Carlo simulations of ion selectivity in a biological $\mathrm{Na}+$ channel: charge-space competition. Phys. Chem. Chem. Phys. 4 (2002), 5154-5160.
[9] M. Burger, R. S. Eisenberg, and H. W. Engl, Inverse problems related to ion channel selectivity. SIAM J. Appl. Math. 67 (2007), 960-989.
[10] A. E. Cardenas, R. D. Coalson, and M. G. Kurnikova, Three-Dimensional Poisson-Nernst-Planck Theory Studies: Influence of Membrane Electrostatics on Gramicidin A Channel Conductance. Biophys. J. 79 (2000), 80-93.
[11] D. P. Chen and R. S. Eisenberg, Charges, currents and potentials in ionic channels of one conformation. Biophys. J. 64 (1993), 1405-1421.
[12] S. Chung and S. Kuyucak, Predicting channel function from channel structure using Brownian dynamics simulations. Clin. Exp. Pharmacol Physiol. 28 (2001), 89-94.
[13] R. D. Coalson, Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Trans Nanobioscience 4 (2005), 81-93.
[14] R. D. Coalson, Discrete-state model of coupled ion permeation and fast gating in ClC chloride channels. J. Phys. A 41 (2009), 115001.
[15] R. Coalson and M. Kurnikova, Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Transaction on NanoBioscience 4 (2005), 81-93.
[16] B. Eisenberg, Ion Channels as Devices. J. Comp. Electro. 2 (2003), 245-249.
[17] B. Eisenberg, Proteins, Channels, and Crowded Ions. Biophys. Chem. 100 (2003), 507-517.
[18] R. S. Eisenberg, Channels as enzymes. J. Memb. Biol. 115 (1990), 1-12.
[19] R. S. Eisenberg, Atomic Biology, Electrostatics and Ionic Channels. In New Developments and Theoretical Studies of Proteins, R. Elber, Editor, 269-357, World Scientific, Philadelphia, 1996.
[20] R. S. Eisenberg, From Structure to Function in Open Ionic Channels. J. Memb. Biol. 171 (1999), 1-24.
[21] B. Eisenberg, Y. Hyon, and C. Liu, Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. J. Chem. Phys. 133 (2010), 104104 (1-23).
[22] B. Eisenberg and W. Liu, Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 38 (2007), 1932-1966.
[23] A. Ern, R. Joubaud, and T. Leliévre, Mathematical study of non-ideal electrostatic correlations in equilibrium electrolytes. Nonlinearity 25 (2012), 1635-1652.
[24] J. Fischer and U. Heinbuch, Relationship between free energy density functional, Born-Green-Yvon, and potential distribution approaches for inhomogeneous fluids. J. Chem. Phys. 88 (1988), 1909-1913.
[25] D. Gillespie, A singular perturbation analysis of the Poisson-Nernst-Planck system: Applications to Ionic Channels. Ph.D Dissertation, Rush University at Chicago, 1999.
[26] D. Gillespie, L. Xu, Y. Wang, and G. Meissner, (De)constructing the Ryanodine Receptor: Modeling Ion Permeation and Selectivity of the Calcium Release Channel. J. Phys. Chem. B 109 (2005), 15598-15610.
[27] D. Gillespie and R. S. Eisenberg, Physical descriptions of experimental selectivity measurements in ion channels. European Biophys. J. 31 (2002), 454-466.
[28] D. Gillespie, W. Nonner, and R. S. Eisenberg, Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux. J. Phys.: Condens. Matter 14 (2002), 12129-12145.
[29] D. Gillespie, W. Nonner, and R. S. Eisenberg, Density functional theory of charged, hard-sphere fluids. Phys. Rev. E 68 (2003), 0313503 (1-10).
[30] D. Gillespie, W. Nonner, and R. S. Eisenberg, Crowded Charge in Biological Ion Channels. Nanotech. 3 (2003), 435-438.
[31] P. Graf, M. G. Kurnikova, R. D. Coalson, and A. Nitzan, Comparison of Dynamic Lattice Monte-Carlo Simulations and Dielectric Self Energy Poisson-Nernst-Planck Continuum Theory for Model Ion Channels. J. Phys. Chem. B 108 (2004), 20062015.
[32] L. J. Henderson, The Fitness of the Environment: an Inquiry Into the Biological Significance of the Properties of Matter. Macmillan, New York, 1927.
[33] U. Hollerbach, D.-P. Chen, and R. S. Eisenberg, Two- and Three-Dimensional Poisson-Nernst-Planck Simulations of Current Flow through Gramicidin-A. J. Comp. Science 16 (2002), 373-409.
[34] U. Hollerbach, D. Chen, W. Nonner, and B. Eisenberg, Three-dimensional Poisson-Nernst-Planck Theory of Open Channels. Biophys. J. 76 (1999), p. A205.
[35] Y. Hyon, B. Eisenberg, and C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9 (2010), 459-475.
[36] Y. Hyon, J. Fonseca, B. Eisenberg, and C. Liu, A new Poisson-Nernst-Planck equation (PNP-FS-IF) for charge inversion near walls. Biophys. J. 100 (2011), 578a.
[37] Y. Hyon, J. Fonseca, B. Eisenberg, and C. Liu, Energy variational approach to study charge inversion (layering) near charged walls. Discrete Contin. Dyn. Syst. Ser. B 17 (2012), 2725-2743.
[38] Y. Hyon, C. Liu, and B. Eisenberg, PNP equations with steric effects: a model of ion flow through channels. J. Phys. Chem. B 116 (2012), 11422-11441.
[39] W. Im, D. Beglov, and B. Roux, Continuum solvation model: Electrostatic forces from numerical solutions to the Poisson-Bolztmann equation. Comp. Phys. Comm. 111 (1998), 59-75.
[40] W. Im and B. Roux, Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 322 (2002), 851-869.
[41] J. W. Jerome, Mathematical Theory and Approximation of Semiconductor Models. Springer-Verlag, New York, 1995.
[42] J. W. Jerome and T. Kerkhoven, A finite element approximation theory for the drift-diffusion semiconductor model. SIAM J. Numer. Anal. 28 (1991), 403-422.
[43] S. Ji and W. Liu, Poisson-Nernst-Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I-V relations and Critical Potentials. Part I: Analysis. J. Dyn. Diff. Equat. 24 (2012), 955-983.
[44] C. Jones, Geometric singular perturbation theory. Dynamical systems (Montecatini Terme, 1994), pp. 44-118. Lect. Notes in Math. 1609, Springer, Berlin, 1995.
[45] C. Jones, T. Kaper, and N. Kopell, Tracking invariant manifolds up tp exponentially small errors. SIAM J. Math. Anal. 27 (1996), 558-577.
[46] C. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems. J. Differential Equations 108 (1994), 64-88.
[47] M. S. Kilic, M. Z. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 75 (2007), 021503 (11 pages).
[48] M. G. Kurnikova, R. D. Coalson, P. Graf, and A. Nitzan, A Lattice Relaxation Algorithm for 3D Poisson-Nernst-Planck Theory with Application to Ion Transport Through the Gramicidin A Channel. Biophys. J. 76 (1999), 642-656.
[49] B. Li, Minimizations of electrostatic free energy and the Poisson-Boltzmann equation for molecular solvation with implicit solvent. SIAM J. Math. Anal. 40 (2009), 2536-2566.
[50] B. Li, Continuum electrostatics for ionic solutions with non-uniform ionic sizes. Nonlinearity 22 (2009), 811-833.
[51] W. Liu, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J. Appl. Math. 65 (2005), 754-766.
[52] W. Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species. J. Differential Equations 246 (2009), 428-451.
[53] W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels. J. Dyn. Diff. Equat. 22 (2010), 413-437.
[54] W. Liu, X. Tu, and M. Zhang, Poisson-Nernst-Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I-V relations and Critical Potentials. Part II: Numerics. J. Dyn. Diff. Equat. 24 (2012), 985-1004.
[55] M. S. Mock, An example of nonuniqueness of stationary solutions in device models. COMPEL 1 (1982), 165-174.
[56] B. Nadler, Z. Schuss, A. Singer, and B. Eisenberg, Diffusion through protein channels: from molecular description to continuum equations. Nanotech. 3 (2003), 439-442.
[57] W. Nonner and R. S. Eisenberg, Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels. Biophys. J. 75 (1998), 1287-1305.
[58] S. Y. Noskov, S. Berneche, and B. Roux, Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431 (2004), 830-834.
[59] S. Y. Noskov, W. Im, and B. Roux, Ion Permeation through the z_{1}-Hemolysin Channel: Theoretical Studies Based on Brownian Dynamics and Poisson-NernstPlanck Electrodiffusion Theory. Biophys. J. 87 (2004), 2299-2309.
[60] S. Y. Noskov and B. Roux, Ion selectivity in potassium channels. Biophys. Chem. 124 (2006), 279-291.
[61] J.-K. Park and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Mathematical study. SIAM J. Appl. Math. 57 (1997), 609-630.
[62] J. K. Percus, Equilibrium state of a classical fluid of hard rods in an external field. J. Stat. Phys. 15 (1976), 505-511.
[63] J. K. Percus, Model grand potential for a nonuniform classical fluid. J. Chem. Phys. 75 (1981), 1316-1319.
[64] A. Robledo and C. Varea, On the relationship between the density functional formalism and the potential distribution theory for nonuniform fluids. J. Stat. Phys. 26 (1981), 513-525.
[65] Y. Rosenfeld, Free-Energy Model for the Inhomogeneous Hard-Sphere Fluid Mixture and Density-Functional Theory of Freezing. Phys. Rev. Lett. 63 (1989), 980983.
[66] Y. Rosenfeld, Free energy model for the inhomogeneous fluid mixtures: Yukawacharged hard spheres, general interactions, and plasmas. J. Chem. Phys. 98 (1993), 8126-8148.
[67] R. Roth, Fundamental measure theory for hard-sphere mixtures: a review. J. Phys.: Condens. Matter 22 (2010), 063102 (1-18).
[68] B. Roux, T. W. Allen, S. Berneche, and W. Im, Theoretical and computational models of biological ion channels. Quat. Rev. Biophys. 37 (2004), 15-103.
[69] B. Roux, Theory of Transport in Ion Channels: From Molecular Dynamics Simulations to Experiments, in Comp. Simul. In Molecular Biology, J. Goodefellow ed., VCH Weinheim, Ch. 6, 133-169 (1995).
[70] B. Roux and S. Crouzy, Theoretical studies of activated processes in biological ion channels, in Classical and quantum dynamics in condensed phase simulations, B.J. Berne, G. Ciccotti and D.F. Coker Eds, World Scientific Ltd., 445-462 (1998).
[71] I. Rubinstein, Multiple steady states in one-dimensional electrodiffusion with local electroneutrality. SIAM J. Appl. Math. 47 (1987), 1076-1093.
[72] I. Rubinstein, Electro-Diffusion of Ions. SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA, 1990.
[73] M. Saraniti, S. Aboud, and R. Eisenberg, The Simulation of Ionic Charge Transport in Biological Ion Channels: an Introduction to Numerical Methods. Rev. Comp. Chem. 22 (2005), 229-294.
[74] Z. Schuss, B. Nadler, and R. S. Eisenberg, Derivation of Poisson and NernstPlanck equations in a bath and channel from a molecular model. Phys. Rev. E 64 (2001), 1-14.
[75] A. Singer and J. Norbury, A Poisson-Nernst-Planck model for biological ion channels-an asymptotic analysis in a three-dimensional narrow funnel. SIAM J. Appl. Math. 70 (2009), 949-968.
[76] A. Singer, D. Gillespie, J. Norbury, and R. S. Eisenberg, Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: applications to ion channels. European J. Appl. Math. 19 (2008), 541-560.
[77] H. Steinrück, Asymptotic analysis of the current-voltage curve of a pnpn semiconductor device. IMA J. Appl. Math. 43 (1989), 243-259.
[78] H. Steinrück, A bifurcation analysis of the one-dimensional steady-state semiconductor device equations. SIAM J. Appl. Math. 49 (1989), 1102-1121.
[79] T. A. van der Straaten, G. Kathawala, R. S. Eisenberg, and U. Ravaioli, BioMOCA - a Boltzmann transport Monte Carlo model for ion channel simulation. Molecular Simulation 31 (2004), 151-171.
[80] S.-K. Tin, N. Kopell, and C. Jones, Invariant manifolds and singularly perturbed boundary value problems. SIAM J. Numer. Anal. 31 (1994), 1558-1576.
[81] G. Wei, Q. Zheng, Z. Chen, and K. Xia, Variational multiscale models for charge transport. SIAM Review 54 (2012), 699-754.
[82] M. Zhang, Asymptotic expansions and numerical simulations of I-V relations via a steady-state Poisson-Nernst-Planck system. Submitted.
[83] Q. Zheng, D. Chen, and W. Wei, Second-order Poisson-Nernst-Planck solver for ion transport. J. Comput. Phys. 230 (2011), 52395262.
[84] Q. Zheng and W. Wei, Poisson-Boltzmann-Nernst-Planck model. J. Chem. Phys. 134 (2011), 194101 (1-17).
[85] S. Zhou, Z. Wang, and B. Li, Mean-field description of ionic size effects with nonuniform ionic sizes: A numerical approach. Phy. Rev. E 84 (2011), 021901 (1-13).

[^0]: *School of Information, Renmin University of China, Beijing 100872, China, E-mail: gjlin@ruc.edu.cn
 ${ }^{\dagger}$ Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA, E-mail: wliu@math.ku.edu
 ${ }^{\ddagger}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA, and School of Mathematics, Jilin University, Changchun, 130012, PRC, E-mail: yi@math.gatech.edu
 ${ }^{\S}$ Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA, E-mail: mingjizhang@math.ku.edu, mzhang0129@yahoo.com.

