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Abstract

In this work, we examine effects of permanent charges on ionic flows through ion channels
via a quasi-one-dimensional classical Poisson-Nernst-Planck (PNP) model. The geometry
of the three-dimensional channel is presented in this model to a certain extent, which
is crucial for the study in this paper. Two ion species, one positively charged and one
negatively charged, are considered with a simple profile of permanent charges: zeros at the
two end regions and a constant Q0 over the middle region. The classical PNP model can be
viewed as a boundary value problem (BVP) of a singularly perturbed system. The singular
orbit of the BVP depends on Q0 in a regular way. Assuming |Q0| is small, a regular
perturbation analysis is carried out for the singular orbit. Our analysis indicates that
effects of permanent charges depend on a rich interplay between boundary conditions and
the channel geometry. Furthermore, interesting common features are revealed: for Q0 = 0,
only an average quantity of the channel geometry plays a role; however, for Q0 6= 0, details
of the channel geometry matter, in particular, to optimize effects of a permanent charge,
the channel should have a short and narrow neck within which the permanent charge is
confined. The latter is consistent with structures of typical ion channels.
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1 Introduction

In this work, we analyze effects of permanent charges on ionic flows through ion channels, based
on a quasi-one-dimensional classical Poisson-Nernst-Planck (PNP) model. The geometry of the
three-dimensional channel is presented in this model to a certain extent, which is crucial for the
study in this paper. We start with a brief discussion of the biological background of ion channel
problems, a quasi-one-dimensional PNP model, and the main concern of our work in this paper.

1.1 Ionic flows and the model

Ion channels provide a major way for cells to communicate with each other and outside world
to perform group tasks. They are large proteins embedded in cell membranes that have “holes”
open to inside and outside of cells. Once channels open, ions (charged particles) flow from
outside to inside of cells and vice verse. The ionic flow produces electric signals that control
many biological functions. The study of ion channel properties consists of two related topics:
structures of ion channels and ionic flow properties. The key structure of an ion channel is the
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channel shape and the permanent charge. The shape of a typical ion channel is cylindrical-like
with variable cross-section areas along its axis. Within an ion channel, amino acid side chains
are distributed, with acidic side chains contributing negative charges and basic side chains
contributing positive charges. It is the specific of side chain distributions in an ion channel that
is referred to as the permanent charge of the ion channel ([11, 12, 40]).

With a given structure of an ion channel, the main concern is then to understand its electrod-
iffusion property. The basic continuum model for electrodiffusion is the Poisson-Nernst-Planck
(PNP) type systems, which are reduced models that treat the medium (aqueous within which
ions are migrating) as dielectric continuum:

∇ ·
(
εr(X)ε0∇Φ

)
= −e

( n∑
s=1

zscs +Q(X)
)
,

∇ · Jk = 0, −Jk =
1

kBT
Dk(X)ck∇µk, k = 1, 2, · · · , n

where X ∈ Ω with Ω being a three-dimensional cylindrical-like domain representing the channel,
Q(X) is the permanent charge density, εr(X) is the relative dielectric coefficient, ε0 is the
vacuum permittivity, e is the elementary charge, kB is the Boltzmann constant, T is the absolute
temperature; Φ is the electric potential, for the kth ion species, ck is the concentration, zk is the
valence (the number of charges per particle), µk is the electrochemical potential depending on
Φ and {cj} (see discussions below), Jk is the flux density, and Dk(X) is the diffusion coefficient.

PNP systems can be derived as reduced models from molecular dynamic models ([48]), from
Boltzmann equations ([4]), and from variational principles ([23, 24, 25]). More sophisticated
models have also been developed. Coupling PNP and Navier-Stokes equations for aqueous
motions was proposed (see, e.g. [7, 10, 13, 17, 22, 47]). In [13], the coupled system was derived
from the energy variational principle. In [10], the coupled system studied numerically for ion
channel problems. In [47], the coupled system was studied numerically for electrolyte-osmosis
through membranes modeled by capillaries. In [17, 22], Onsager’s Reciprocal Law was rigorously
established for the relations between the three fluxes (solvent flux, relative solute flux, and
electrical current) and the three forces (pressure, osmotic potential, and electrical potential),
and the nine coefficients in the relation are explicitly identified. A more fully developed two-
fluid model was proposed in [7] which reduces to previously-known models in various simpler
situations. Conformations of channel geometries were also incorporated ([53, 54]). Reviews
of various models for ion transports and comparisons among the models can be found in [2,
26, 46, 54]. While these sophisticated systems beyond PNP systems can model the physical
problem more accurately, it is a great challenge to examine their dynamics analytically and
even computationally. Focusing on key features of the biological system, PNP systems represent
as appropriate models for analysis and numerical simulations of ionic flows.

Our analysis is based on a further reduction of PNP models. On the basis that ion channels
have narrow cross-sections relative to their lengths, PNP systems defined on three-dimensional
ion channels are further reduced to quasi-one-dimensional models first proposed in [41] and, for
a special case, the reduction is rigorously justified in [37]. For a mixture of n ion species, a
quasi-one-dimensional PNP model is

1

h(x)

d

dx

(
εr(x)ε0h(x)

dΦ

dx

)
= −e

( n∑
s=1

zscs +Q(x)
)
,

dJk
dx

= 0, −Jk =
1

kBT
Dk(x)h(x)ck

dµk
dx

, k = 1, 2, · · · , n
(1.1)

where x ∈ [0, 1] is the coordinate along the axis of the channel that is normalized to [0, 1], h(x)
is the area of cross-section of the channel over the location x.
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Equipped with system (1.1), we impose the following boundary conditions (see, [14] for a
reasoning), for k = 1, 2, · · · , n,

Φ(0) = V, ck(0) = Lk > 0; Φ(1) = 0, ck(1) = Rk > 0. (1.2)

For ion channels, an important characteristic is the I-V (current-voltage) relation. Given a
solution of the boundary value problem (BVP) (1.1) and (1.2), the current I is

I =

n∑
j=1

zjJj . (1.3)

If boundary concentrations Lk’s and Rk’s are fixed, then Jk’s depend on V only and formula
(1.3) provides a dependence of the current I on the voltage V.

An important modeling component is the electrochemical potential µk. It consists of the
ideal component µidk (x) given by

µidk (x) = zkeΦ(x) + kBT ln
ck(x)

c0
(1.4)

with some characteristic number density c0, and the excess component µexk (x). The ideal com-
ponent µidk (x) contains contributions of ion particles as point charges and ignores the ion-to-ion
interaction. PNP models including ideal components are referred to as classical PNP models.
Numerical studies have shown that classical PNP models provide good qualitative agreements
with experimental data for I-V relations ([4, 5]). Dynamics of classical PNP models has also been
analyzed by using asymptotic expansion methods ([1, 6, 32, 42, 49, 50, 52, 55]) and geometric
singular perturbation approaches ([14, 15, 35, 36, 39]).

The excess component µexk (x) accounts for ion sizes, which is a crucial component for many
important properties of ion channels such as selectivity. Modeling of the excess component
µexk (x) is extremely challenging and is not completely understood. A great deal of efforts has been
attributed to approximations of µexk (x) based on mean-spherical approximations, fundamental
measure theory, and density functional theory (e.g., [8, 9, 43, 44, 45]). Numerical simulations
of PNP with approximated models of µexk (x) have been conducted for ion channel problems in
comparison with experimental data and have shown great successes for properties such as ion
permeation and ion selectivity (e.g., [18, 19, 20, 21]). Other important phenomena involving
µexk (x) such as steric effects, layering, charge inversions, and critical potentials have also been
studied [3, 16, 23, 24, 25, 27, 30, 31, 33, 34, 38, 56].

In this work, we will take classical PNP models that include the ideal component µidk (x) in
(1.4) only to examine permanent charge effects on ionic flows.

1.2 Basic concerns and a brief description of main results

As observed in [15], the Nernst-Planck equation in (1.1) for the flux Jk gives

Jk
∫ 1

0

kBT

Dk(x)h(x)ck(x)
dx = µk(0)− µk(1). (1.5)

Thus, the sign of Jk is determined by the boundary conditions – independent of the permanent
chargeQ(x). However, magnitudes of Jk’s, and hence, the sign and the magnitude of I do depend
on the permanent charge Q(x) in general. This motivated the following question raised and
examined in [15]: Can permanent charges produce zero current ? For the case Dk(x) = h(x) = 1
with a simple profile of a permanent charge

Q(x) =

 0, 0 < x < a,
Q0, a < x < b,
0, b < x < 1,

(1.6)
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where Q0 is a constant, the authors of [15] derived a single algebraic equation (equation (3.2)
in [15]) that determines the answer; that is, there is a Q0 such that I = 0 if and only if the
algebraic equation has a real root. Furthermore, even for simple settings with two oppositely
charged ion species, there are extremely rich phenomena for the effects of permanent charges,
many are far from intuitive (see Section 4 in [15]).

In this work, we will consider a simple setting with n = 2 and Q(x) as in (1.6) with |Q0| small
relative to the boundary concentrations Lk’s and Rk’s. Treating system (1.1) as a singularly
perturbed problem (see Section 2 for details), we will apply the geometric singular perturbation
method ([14, 36]) to study the BVP (1.1) and (1.2). For the zeroth order approximation of the
BVP (1.1) and (1.2), if we consider its dependence on Q0 and write, particularly,

Jk(Q0) = Jk0 + Jk1Q0 +O(Q2
0) and I(Q0) = I0 + I1Q0 +O(Q2

0), (1.7)

then Jk1’s and I1 contain the leading information about effects of the permanent charge Q(x)
on ionic flows. The main objective of this paper is to study dependences of Jk1’s and I1 on the
boundary conditions V, Lk’s, Rk’s, and the channel geometry h(x).

Our analysis indicates that effects of permanent charges depend on a rich interplay between
boundary conditions and the channel geometry. Yet, we are able to characterize these compli-
cated interplays in precise terms (see Section 4). Furthermore, interesting common features are
revealed: for Q0 = 0, only an average quantity of the channel geometry plays a role; however, for
Q0 6= 0, details of the channel geometry matter, in particular, to optimize effects of a permanent
charge, the channel should have a short and narrow neck within which the permanent charge
is confined. We remark that the latter was not anticipated by the authors in the beginning.
It is the analysis that leads to this finding, which is consistent with structures of typical ion
channels. To the best of the authors’ knowledge, this work is the first analysis on roles that
channel geometry plays in ionic flows.

The rest of this paper is organized as follows. In Section 2, we provide the setup of our
problem, review briefly the geometric singular perturbation theory for classical PNP models,
and recall the governing system from [14] for singular orbits of the BVP. In Section 3, the singular
orbit, determined by the solution of the governing system, is expanded in Q0 near Q0 = 0 to
obtain expressions for Jk1’s and I1 defined in (1.7). Section 4 is devoted to a detailed analysis
of dependences of Jk1’s and I1 on the boundary conditions V, Lk’s, Rk’s, and the channel
geometry h(x). The paper ends with conclusion remarks in Section 5.

2 Problem Setup and the Governing System

Our study of effects of permanent charges on ionic flows starts with an analysis of the BVP (1.1)
and (1.2).

2.1 The assumptions

For the BVP (1.1) and (1.2), we will take the same setting as that in [14]; that is,

(A1). We consider two ion species (n = 2) with z1 > 0 > z2.

(A2). For Q(x) in (1.6), we assume |Q0| is small relative to Lk’s and Rk’s.

(A3). For µk, we only include the ideal component µidk as in (1.4).

(A4). We assume that εr(x) = εr and Dk(x) = Dk are constants.

In the sequel, we will assume (A1)–(A4). With the re-scaling

φ =
e

kBT
Φ, V =

e

kBT
V, ε2 =

εrε0kBT

e2
, Jk =

Jk
Dk

,
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and the expression (1.4) for µk = µidk (x), the BVP (1.1) and (1.2) is, for k = 1, 2,

ε2

h(x)

d

dx

(
h(x)

d

dx
φ

)
= −z1c1 − z2c2 −Q(x),

h(x)
dck
dx

+ zkh(x)ck
dφ

dx
= −Jk,

dJk
dx

= 0,

(2.1)

with the boundary conditions,

φ(0) = V, ck(0) = Lk; φ(1) = 0, ck(1) = Rk. (2.2)

We will assume ε > 0 small and treat system (2.1) as a singularly perturbed system and
apply the geometric singular perturbation framework from [14] for the BVP (2.1) and (2.2) (see
[36] for a general setting with arbitrary n).

2.2 Geometric singular perturbation theory for (2.1)-(2.2)

We will rewrite system (2.1) into a dynamical system of first order ordinary differential equations
and convert the BVP (2.1) and (2.2) to a connecting problem.

Denote the derivative with respect to x by overdot and introduce u = εφ̇ and τ = x. System
(2.1) becomes, for k = 1, 2,

εφ̇ =u, εu̇ = −z1c1 − z2c2 −Q(τ)− εhτ (τ)

h(τ)
u,

εċk =− zkcku−
ε

h(τ)
Jk, J̇k = 0, τ̇ = 1.

(2.3)

System (2.3) is a singularly perturbed dynamical system with phase space R7 and state variables
(φ, u, c1, c2, J1, J2, τ). System (2.3) is the so-called slow system. The rescaling x = εξ in (2.3)
gives rise to the fast system, for k = 1, 2,

φ′ =u, u′ = −z1c1 − z2c2 −Q(τ)− εhτ (τ)

h(τ)
u,

c′k =− zkcku−
ε

h(τ)
Jk, J ′k = 0, τ ′ = ε,

(2.4)

where prime denotes the derivative with respect to the variable ξ.
Let BL and BR be the subsets of the phase space R7 defined by

BL ={(V, u, L1, L2, J1, J2, 0) ∈ R7 : arbitrary u, J1, J2},
BR ={(0, u,R1, R2, J1, J2, 1) ∈ R7 : arbitrary u, J1, J2}.

Then, the BVP (2.1) and (2.2) is equivalent to a connecting problem, namely, finding an
orbit of (2.3) or (2.4) from BL to BR.

A general approach to the connecting problem: A strategy in analyzing this connect-
ing problem of classical PNP models was developed in [14] (in [36] for a general setting), which
has been successfully extended to handle PNP with hard-sphere ions in [27, 34, 38]. The classical
PNP system is first reduced to two subsystems: the limiting fast and the limiting slow system.
Due to two special structures of the classical PNP system, the limiting slow and limiting fast
systems can be integrated. A singular orbit, the zeroth order approximation, for the connecting
problem is constructed by matching slow orbits (those of the limiting slow system) and fast
orbits (those of limiting fast system). The matching leads to a system of algebraic equations,
the governing system for singular orbits of the connecting problem (see [14, 36]). Once a singular
orbit is constructed, under a certain transversality condition, one can apply Exchange Lemmas
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(see, e.g., [28, 29, 51]) to show that there is a unique solution of the BVP for small ε > 0 in the
vicinity of the singular orbit.

For the present problem with small |Q0|, one can obtain explicit expansions in Q0 of singular
slow and fast orbits. Application of the matching to the expansions will lead to an explicit
expansion of a singular orbit for the connecting problem.

A shortcut based on the governing system: One can also start with the governing
system in [14] directly and apply regular perturbation theory to obtain the singular orbit for
small |Q0|. This will be the approach adopted in this paper to complement the general full
procedure described above and developed in other papers mentioned before.

We comment that, forQ0 = 0, the BVP (1.1) and (1.2) was shown to have a unique solution in
[39] for a general n with distinct zk’s and for h(x) = 1; in particular, the transversality condition
for an application of the Exchange Lemma is established. This result applies immediately to
the present problem for |Q0| small. We thus will focus on singular orbits in the sequel.

We now summarize the construction of a singular orbit that leads to the governing system
derived in [14] and recast in (2.7) and (2.8).

Due to the jumps of the permanent charge Q(x) in (1.6) at x = a and x = b, one splits the
construction of a singular orbit on the interval [0, 1] into that on three subintervals [0, a], [a, b]
and [b, 1] first. For the latter, we preassign (unknown) values of φ, c1 and c2 at x = a and x = b:

φ(a) = φa, c1(a) = ca1 , c2(a) = ca2 ; φ(b) = φb, c1(b) = cb1, c2(b) = cb2. (2.5)

In terms of these six unknowns, one can construct singular orbits on each subinterval.

(i) The singular orbit on [0, a] consists of two boundary layers (fast orbits) Γ0
l at x = 0, Γal

at x = a and one regular layer (slow orbit) Λl over (0, a) with (φ, c1, c2, τ) being

(V,L1, L2, 0) at x = 0 and (φa, ca1 , c
a
2 , a) at x = a.

In particular, given (φa, ca1 , c
a
2), the scaled flux densities J l1, J

l
2 and the value ul(a) are

uniquely determined.

(ii) The singular orbit on [a, b] consists of two boundary layers Γam at x = a, Γbm at x = b and
one regular layer Λm over (a, b) with (φ, c1, c2, τ) being

(φa, ca1 , c
a
2 , a) at x = a and (φb, cb1, c

b
2, b) at x = b.

In particular, given (φa, ca1 , c
a
2) and (φb, cb1, c

b
2), the scaled flux densities Jm1 , J

m
2 and the

values um(a) and um(b) are uniquely determined.

(iii) The singular orbit on [b, 1] consists of two boundary layers Γbr at x = b, Γ1
r at x = 1 and

one regular layer Λr over (b, 1) with (φ, c1, c2, τ) being

(φb, cb1, c
b
2, b) at x = b and (0, R1, R2, 1) at x = 1.

In particular, given (φb, cb1, c
b
2), the scaled flux densities Jr1 , J

r
2 and the value ur(b) are

uniquely determined.

To obtain a singular orbit on [0, 1], one requires the following matching conditions

J l1 = Jm1 = Jr1 , J l2 = Jm2 = Jr2 , ul(a) = um(a), um(b) = ur(b). (2.6)

This consists of six conditions, exactly the same as the number of unknowns preassigned in (2.5).
The matching conditions (2.6) then reduce the singular connecting problem to the governing
system, system (43) in [14], recast below (Note that α and β in [14] are related to z1 and z2 in
this paper as α = z1 and β = −z2):
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z1c
a
1e
z1(φ

a−φa,m) + z2c
a
2e
z2(φ

a−φa,m) +Q0 = 0,

z1c
b
1e
z1(φ

b−φb,m) + z2c
b
2e
z2(φ

b−φb,m) +Q0 = 0,

z2 − z1
z2

ca,l1 = ca1e
z1(φ

a−φa,m) + ca2e
z2(φ

a−φa,m) +Q0(φa − φa,m),

z2 − z1
z2

cb,r1 = cb1e
z1(φ

b−φb,m) + cb2e
z2(φ

b−φb,m) +Q0(φb − φb,m),

J1 =
cL1 − c

a,l
1

H(a)

(
1 +

z1(φL − φa,l)
ln cL1 − ln ca,l1

)
=

cb,r1 − cR1
H(1)−H(b)

(
1 +

z1(φb,r − φR)

ln cb,r1 − ln cR1

)
,

J2 =
cL2 − c

a,l
2

H(a)

(
1 +

z2(φL − φa,l)
ln cL2 − ln ca,l2

)
=

cb,r2 − cR2
H(1)−H(b)

(
1 +

z2(φb,r − φR)

ln cb,r2 − ln cR2

)
,

φb,m = φa,m − (z1J1 + z2J2)y,

cb,m1 = ez1z2(J1+J2)yca,m1 − Q0J1
z1(J1 + J2)

(
1− ez1z2(J1+J2)y

)
,

J1 + J2 = − (z1 − z2)(ca,m1 − cb,m1 ) + z2Q0(φa,m − φb,m)

z2(H(b)−H(a))
,

(2.7)

where y > 0 is also unknown, and

φL =V − 1

z1 − z2
ln
−z2L2

z1L1
, φR = − 1

z1 − z2
ln
−z2R2

z1R1
,

φa,l =φa − 1

z1 − z2
ln
−z2ca2
z1ca1

, φb,r = φb − 1

z1 − z2
ln
−z2cb2
z1cb1

,

cL1 =
1

z1
(z1L1)

−z2
z1−z2 (−z2L2)

z1
z1−z2 , cL2 = − 1

z2
(z1L1)

−z2
z1−z2 (−z2L2)

z1
z1−z2 ,

ca,l1 =
1

z1
(z1c

a
1)

−z2
z1−z2 (−z2ca2)

z1
z1−z2 , ca,l2 = − 1

z2
(z1c

a
1)

−z2
z1−z2 (−z2ca2)

z1
z1−z2 ,

cb,r1 =
1

z1
(z1c

b
1)

−z2
z1−z2 (−z2cb2)

z1
z1−z2 , cb,r2 = − 1

z2
(z1c

b
1)

−z2
z1−z2 (−z2cb2)

z1
z1−z2 ,

ca,m1 =ez1(φ
a−φa,m)ca1 , cb,m1 = ez1(φ

b−φb,m)cb1,

cR1 =
1

z1
(z1R1)

−z2
z1−z2 (−z2R2)

z1
z1−z2 , cR2 = − 1

z2
(z1R1)

−z2
z1−z2 (−z2R2)

z1
z1−z2 ,

H(x) =

∫ x

0

h−1(s)ds.

(2.8)

Once a solution for (2.7) and (2.8) is obtained, one can determine a singular orbit (Γ0
l ∪Λl ∪

Γal ) ∪ (Γam ∪ Λm ∪ Γbm) ∪ (Γbr ∪ Λr ∪ Γ1
r) to connect BL and BR.

3 Expansion of Singular Solutions in Small |Q0|
As mentioned in the introduction, we will assume that |Q0| is small. With this assumption, we
expand all unknown quantities in the governing system (2.7) and (2.8) in Q0; for example, we
write

φa =φa0 + φa1Q0 + φa2Q
2
0 + o(Q2

0), φb = φb0 + φb1Q0 + φb2Q
2
0 + o(Q2

0),

cak =cak0 + cak1Q0 + cak2Q
2
0 + o(Q2

0), cbk = cbk0 + cbk1Q0 + cbk2Q
2
0 + o(Q2

0),

y =y0 + y1Q0 + y2Q
2
0 + o(Q2

0), Jk = Jk0 + Jk1Q0 + Jk2Q
2
0 + o(Q2

0).

(3.1)
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For the expansions, we will determine the coefficients of the zeroth order and first order
terms for dominating effects of the permanent charge on ionic flows.

3.1 Zeroth order solution of (2.7) and (2.8)

The problem for Q0 = 0 has been solved in [35] for h(x) = 1 and, for a general h(x), it can be
solved as in [14] over the interval [0, a]. One can also obtain the zeroth order solution directly
by substituting (3.1) into (2.7), expanding the identities in Q0, and comparing the terms of
like-powers in Q0. We summarize the result for the zeorth order terms below. Denote

α =
H(a)

H(1)
and β =

H(b)

H(1)
. (3.2)

Proposition 3.1. The zeroth order solution in Q0 of (2.7) and (2.8) is given by

ca,l10 = ca,m10 = ca10 = cL1 + α(cR1 − cL1 ), z1c
a
10 = −z2ca20,

cb,m10 = cb,r10 = cb10 = cL1 + β(cR1 − cL1 ), z1c
b
10 = −z2cb20,

φa,l0 = φa,m0 = φa0 =
ln cR1 − ln ca10
ln cR1 − ln cL1

φL +
ln ca10 − ln cL1
ln cR1 − ln cL1

φR,

φb,m0 = φb,r0 = φb0 =
ln cR1 − ln cb10
ln cR1 − ln cL1

φL +
ln cb10 − ln cL1
ln cR1 − ln cL1

φR,

y0 =
H(1)

z1(z1 − z2)(cR1 − cL1 )
ln

(1− β)cL1 + βcR1
(1− α)cL1 + αcR1

,

J10 =
cL1 − cR1

H(1)(ln cL1 − ln cR1 )
(z1V + lnL1 − lnR1) ,

J20 =
cL2 − cR2

H(1)(ln cL2 − ln cR2 )
(z2V + lnL2 − lnR2) .

Corollary 3.2. Under electroneutrality boundary conditions z1L1 = −z2L2 = L and z1R1 =
−z2R2 = R, one has cLj = Lj, c

R
j = Rj, φ

L = V , φR = 0, and

z1c
a,l
10 = z1c

a,m
10 = z1c

a
10 = (1− α)L+ αR, z1c

a
10 = −z2ca20,

z1c
b,m
10 = z1c

b,r
10 = z1c

b
10 = (1− β)L+ βR, z1c

b
10 = −z2cb20,

φa,l0 = φa,m0 = φa0 =
ln((1− α)L+ αR)− lnR

lnL− lnR
V,

φb,m0 = φb,r0 = φb0 =
ln((1− β)L+ βR)− lnR

lnL− lnR
V,

y0 =
H(1)

(z1 − z2)(L−R)
ln

(1− α)L+ αR

(1− β)L+ βR
,

J10 =
L−R

z1H(1)(lnL− lnR)
(z1V + lnL− lnR) ,

J20 = − L−R
z2H(1)(lnL− lnR)

(z2V + lnL− lnR) .
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3.2 First order solution in Q0 of (2.7) and (2.8)

For the first order terms in Q0, we will first express the intermediate variables such as φa,l1 , ca,lk1 ,
etc. in terms of zeroth order terms and φa1 , cak1, etc.

Lemma 3.3. One has

z1c
a
11 + z2c

a
21 =− 1

2
, φa,m1 = φa1 +

1

2z1(z1 − z2)ca10
,

z1c
b
11 + z2c

b
21 =− 1

2
, φb,m1 = φb1 +

1

2z1(z1 − z2)cb10
.

Proof. We will derive the first two identities. Substitute (3.1) into the first equation in (2.7) and
expand in Q0 to get, for the zeroth-order in Q0, z1c

a
10 + z2c

a
20 = 0 that is stated in Proposition

3.1; for the first order in Q0,

φa1 − φ
a,m
1 = −z1c

a
11 + z2c

a
21 + 1

z21c
a
10 + z22c

a
20

. (3.3)

Substituting the expression for ca,l1 from (2.8) into the third equation in (2.7) and expanding
the resulting equation up to Q2

0-order terms, one has that

−z1 − z2
z2

ca10 + (ca11 + ca21)Q0 −
(z1c

a
11 + z2c

a
21)2

2(z1 − z2)z1ca10
Q2

0 = (ca10 + ca20) + (ca11 + ca21)Q0

+ (z1c
a
11 + z2c

a
21 + 1)(φa1 − φ

a,m
1 )Q2

0 +
z21c

a
10 + z22c

a
20

2
(φa1 − φ

a,m
1 )2Q2

0.

The zeroth and first order terms on both sides are identical. The Q2
0-terms give

− (z1c
a
11 + z2c

a
21)2

2(z1 − z2)z1ca10
= (z1c

a
11 + z2c

a
21 + 1)(φa1 − φ

a,m
1 ) +

z21c
a
10 + z22c

a
20

2
(φa1 − φ

a,m
1 )2.

Substitute (3.3) for φa1 − φ
a,m
1 into above to get

(z1c
a
11 + z2c

a
21)2

(z1 − z2)z1ca10
=

(z1c
a
11 + z2c

a
21 + 1)2

z21c
a
10 + z22c

a
20

.

Note that (z1 − z2)z1c
a
10 = z21c

a
10 + z22c

a
20. We thus have z1c

a
11 + z2c

a
21 = − 1

2 . The latter and
(3.3) then give the second identity.

Lemma 3.4. One has

φa,l1 =φa1 −
ca10c

a
21 − ca20ca11

(z1 − z2)ca10c
a
20

, ca,l11 =
z2(ca11 + ca21)

z2 − z1
, ca,l21 =

z1(ca11 + ca21)

z1 − z2
,

ca,m11 =ca11 −
1

2(z1 − z2)
, cb,m11 = cb11 −

1

2(z1 − z2)
,

φb,r1 =φb1 −
cb10c

b
21 − cb20cb11

(z1 − z2)cb10c
b
20

, cb,r11 =
z2(cb11 + cb21)

z2 − z1
, cb,r21 =

z1(cb11 + cb21)

z1 − z2
.

Proof. One expands the relevant identities in (2.8) in Q0, compares the first order terms in Q0

and uses the results for the zeroth order terms in Proposition 3.1 and the relation in Lemma
3.3. The relations then follows. The details will be omitted.
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Applying the same procedure as above to the last four identities in (2.7) and using results
in Proposition 3.1 and Lemmas 3.3 and 3.4, one obtains directly

J11 = − z1(cL1 − ca10)

αH(1)(ln cL1 − ln ca10)

(
φa1 −

z2(φL − φa0)(ca11 + ca21)

(z2 − z1)(ln cL1 − ln ca10)ca10

− ca10c
a
21 − ca20ca11

(z1 − z2)ca10c
a
20

)
− z2(ca11 + ca21)

(z2 − z1)αH(1)

(
1 +

z1(φL − φa0)

ln cL1 − ln ca10

)
= − z1(cb10 − cR1 )

(1− β)H(1)(ln cR1 − ln cb10)

(
φb1 −

z2(φR − φb0)(cb11 + cb21)

(z2 − z1)(ln cR1 − ln cb10)cb10

− c
b
10c

b
21 − cb20cb11

(z1 − z2)cb10c
b
20

)
− z2(cb11 + cb21)

(z1 − z2)(1− β)H(1)

(
1 +

z1(φR − φb0)

ln cR1 − ln cb10

)
,

J21 = − z2(cL2 − ca20)

αH(1)(ln cL2 − ln ca20)

(
φa1 −

z1(φL − φa0)(ca11 + ca21)

(z1 − z2)(ln cL2 − ln ca20)ca20

− ca10c
a
21 − ca20ca11

(z1 − z2)ca10c
a
20

)
− z1(ca11 + ca21)

(z1 − z2)αH(1)

(
1 +

z2(φL − φa0)

ln cL2 − ln ca20

)
= − z2(cb20 − cR2 )

(1− β)H(1)(ln cR2 − ln cb20)

(
φb1 −

z1(φR − φb0)(cb11 + cb21)

(z1 − z2)(ln cR2 − ln cb20)cb20

− c
b
10c

b
21 − cb20cb11

(z1 − z2)cb10c
b
20

)
+

z1(cb11 + cb21)

(z1 − z2)(1− β)H(1)

(
1 +

z2(φR − φb0)

ln cR2 − ln cb20

)
,

φb1 = φa1 +
cb10 − ca10

2z1(z1 − z2)ca10c
b
10

− (z1J10 + z2J20)y1 − (z1J11 + z2J21)y0,

cb11 =

[
ca11 −

1

2(z1 − z2)
+

J10
z1(J10 + J20)

]
cb10
ca10

+
1

2(z1 − z2)

+ z1z2c
b
10((J10 + J20)y1 + (J11 + J21)y0)− J10

z1(J10 + J20)
,

J11 + J21 =
(z2 − z1)(ca11 − cb11)

z2(β − α)H(1)
− φa0 − φb0

(β − α)H(1)
.

(3.4)

We are now ready to obtain the first order terms.

Proposition 3.5. First order terms of the solution in Q0 to system (2.7) are given by

ca11 =
z2α(φb0 − φa0)

z1 − z2
− 1

2(z1 − z2)
, ca21 =

z1α(φb0 − φa0)

z2 − z1
− 1

2(z2 − z1)
,

cb11 =
z2(1− β)(φa0 − φb0)

z1 − z2
− 1

2(z1 − z2)
, cb21 =

z1(1− β)(φa0 − φb0)

z2 − z1
− 1

2(z2 − z1)
,

φa1 =
(1 + z1λ)(1 + z2λ)(cb10 − ca10)(ln cL1 − ln ca10)

z1(z1 − z2)ca10c
b
10(ln cR1 − ln cL1 )

+
1

2z1(z1 − z2)ca10
+
z2α(φb0 − φa0)

(z1 − z2)ca10
λ,

φb1 =
(1 + z1λ)(1 + z2λ)(cb10 − ca10)(ln cR1 − ln cb10)

z1(z1 − z2)ca10c
b
10(ln cR1 − ln cL1 )

+
1

2z1(z1 − z2)cb10
+
z2(1− β)(φa0 − φb0)

(z1 − z2)cb10
λ,

y1 =
((1− β)cL1 + αcR1 )(φa0 − φb0)

z1(z1 − z2)(J10 + J20)ca10c
b
10

+
(ln ca10 − ln cb10)(φa0 − φb0)

z1(z1 − z2)(J10 + J20)(cL1 − cR1 )

− (z2J10 + z1J20)(ca10 − cb10)

z21z2(z1 − z2)(J10 + J20)2ca10c
b
10

,

10



J11 =
A(z2(1−B)λ+ 1)

(z1 − z2)H(1)
(z1λ+ 1), J21 =

A(z1(1−B)λ+ 1)

(z2 − z1)H(1)
(z2λ+ 1),

where

λ =
φL − φR

ln cL1 − ln cR1
, A =

(cL1 − cR1 )(cb10 − ca10)

ca10c
b
10(ln cL1 − ln cR1 )

,

B =
ln cb10 − ln ca10

A
=

(ln cL1 − ln cR1 )(ln cb10 − ln ca10)

(cL1 − cR1 )(cb10 − ca10)
ca10c

b
10.

(3.5)

Proof. The two equations z1c
a
11 + z2c

a
21 = − 1

2 and z1c
b
11 + z2c

b
21 = − 1

2 in Lemma 3.3 together
with the seven equations in (3.4) form a system of nine linear equations in the nine first order
term variables (ca11, c

a
21, c

b
11, c

b
21, φ

a
1 , φ

b
1, y1, J11, J21). Other quantities in the system are zeroth

order terms. The solution of this linear system gives rise to the expressions of the first order
terms. We omit the details.

Remark 3.6. In Proposition 3.5, we have expressed the first order quantities φa1, φb1, y1 and
Jk1’s in terms of zeroth order quantities, such as cL1 , cR1 , ca10, cb10, associated to the 1st ion
species. Of course, they can all be expressed in terms of zeroth order quantities associated
to the 2nd ion species; that is, on the right-hand-sides of the formulas for φa1, φb1, y1 and
Jk1’s, one can interchange the subscripts 1 and 2 to get the same results, after applying the
results in Proposition 3.1. There is another symmetry; that is, if one flips the channel with the
formal transformation (V,Lk, 0, Rk; a, b)→ (0, Rk, V, Lk; b, a), then it should result in the change
(φa1 , c

a
k1, φ

b
1, c

b
k1, y1, Jk1, α, β)→ (φb1, c

b
k1, φ

a
1 , c

a
k1,−y1,−Jk1, 1− β, 1− α). These two symmetries

can be verified for the corresponding formulas in Proposition 3.5 easily and we have done so.

4 Effects of Permanent Charge and Channel Geometry

In this section, we study effects of permanent charges and channel geometry on individual fluxes
and on I-V relations under electroneutrality conditions

z1L1 = −z2L2 = L and z1R1 = −z2R2 = R. (4.1)

This will be based on the singular orbit of the BVP constructed in the previous section.
For |Q0| small, the flux Jk of the kth ion species and the current I are

Jk =DkJk0 +DkJk1Q0 +O(Q2
0), I = I0 + I1Q0 +O(Q2

0),

where

I0 = z1D1J10 + z2D2J20 and I1 = z1D1J11 + z2D2J21. (4.2)

The quantities J11 and J21 encode the leading effects of permanent charges and channel
geometry on the ionic flow and will be analyzed for this purpose.

4.1 A comparison between zeroth order and first order in Q0

For the kth ion species, denote the difference of its electrochemical potentials at the two bound-
aries by

µδk :=µδk(V ;Lk, Rk) = µk(0)− µk(1) = kBT (zkV + lnLk − lnRk). (4.3)
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Under the electroneutrality conditions (4.1), from Corollary 3.2,

J10 =
L−R

z1H(1)(lnL− lnR)

µδ1
kBT

=
L1 −R1

H(1)(lnL1 − lnR1)

µδ1
kBT

,

J20 =
R− L

z2H(1)(lnL− lnR)

µδ2
kBT

=
L2 −R2

H(1)(lnL2 − lnR2)

µδ2
kBT

.

(4.4)

Also, it follows from Proposition 3.5 that

J11 =
A(z2(1−B)V + lnL− lnR)

(z1 − z2)H(1)(lnL− lnR)2
µδ1
kBT

,

J21 =
A(z1(1−B)V + lnL− lnR)

(z2 − z1)H(1)(lnL− lnR)2
µδ2
kBT

,

(4.5)

where, in terms of α and β defined in (3.2), A and B defined in (3.5) become

A =A(L,R) = − (β − α)(L−R)2

((1− α)L+ αR)((1− β)L+ βR)(lnL− lnR)
,

B =B(L,R) =
ln((1− β)L+ βR)− ln((1− α)L+ αR)

A
.

(4.6)

Lemma 4.1. The quantities A = A(L,R), B = B(L,R) and µδk(V ;L,R) scale invariantly in
(L,R); that is, for any s > 0,

A(sL, sR) = A(L,R), B(sL, sR) = B(L,R), and µδk(V ; sL, sR) = µδk(V ;L,R).

Proof. It follows directly from the expressions for A, B in (4.6) and µδk in (4.3).

Proposition 4.2. The quantities Jk0(V ;L,R) and I0(V ;L,R) scale linearly in (L,R), and
Jk1(V ;L,R) and I1(V ;L,R) scale invariantly in (L,R); that is, for any s > 0,

Jk0(V ; sL, sR) =sJk0(V ;L,R), I0(V ; sL, sR) = sI0(V ;L,R),

Jk1(V ; sL, sR) =Jk1(V ;L,R), I1(V ; sL, sR) = I1(V ;L,R).

Proof. The statements follow directly from (4.2), (4.4), (4.5), and Lemma 4.1.

Remark 4.3. (i) Formulas (4.4) and (4.5) for the approximations up to order O(Q0) of Jk0’s
and Jk1’s are consistent with the formulas in (1.5), that is, for |Q0| small, Jk = DkJk0 +
DkJk1Q0 is positively proportional to µδk = µk(0)− µk(1).

(ii) Note that J10 is independent of the other type of ion species; that is, for different values
of z2, J10 stays the same as long as the electroneutrality conditions hold. Likewise, J20 is
independent of z1 in the same sense. However, J11 does depend on z2 and J21 does depend on
z1. This is expected since a permanent charge Q(x) provides an agency for one ion species to
interact with the other through electric field.

(iii) The channel geometry does have effects on J10 and J20 but in a simpler way through
the average quantity H(1) on the denominator in (4.4). More details of the channel geometry
through α and β in addition to H(1) are involved in (4.5) for J11 and J21. We will examine the
roles of channel geometry on the signs of Jk1 and on the magnitudes of Jk1 in the next part.

To end this part, we introduce a function that will be used in a number of places below. For
t > 0, set

γ(t) =
t ln t− t+ 1

(t− 1) ln t
for t 6= 1 and γ(1) =

1

2
. (4.7)

One establishes easily that

Lemma 4.4. For t > 0, 0 < γ(t) < 1, γ′(t) > 0, limt→0 γ(t) = 0, limt→∞ γ(t) = 1.
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4.2 Dependence of signs of Jk1 on channel geometry

In this part, we will determine the signs of Jk1’s relative to those of Jk0’s in terms of the channel
geometry (α, β) and the boundary condition (V,L,R).

Lemma 4.5. Assume z1 > 0 > z2. Then, A and R− L have the same sign.

Proof. This follows from the expression for A in (4.6).

Lemma 4.6. Set t = L/R and let γ(t) be as in (4.7). Then, B > 0 and limt→1B = 1.
For t > 1, one has

(i) if α < γ(t), then there exists a unique β1 ∈ (α, 1) such that

1−B < 0 for β ∈ (α, β1) and 1−B > 0 for β ∈ (β1, 1);

(ii) if α ≥ γ(t), then 1−B > 0.

For t < 1, one has

(iii) if 1− β < γ(1/t), then there exists a unique α1 ∈ (0, β) such that

1−B < 0 for α ∈ (α1, β) and 1−B > 0 for α ∈ (0, α1);

(iv) if 1− β ≥ γ(1/t), then 1−B > 0.

Proof. Since both A and ln((1− β)L+ βR)− ln((1− α)L+ αR) have the opposite sign as that
of L−R, it yields that B > 0. With t = L/R,

1−B =
g(β)

(β − α)(t− 1)2
,

where

g(β) =
(
(1− α)t+ α

)(
(1− β)t+ β

)
ln t ln

(1− β)t+ β

(1− α)t+ α
+ (β − α)(t− 1)2.

With a direct application of l’Hospital’s rule, one has limt→1(1−B) = 0.
For the other statements, we will establish (i) and (ii) for t > 1. Those for t < 1 can be

established in a similar way.
It’s clear that (1−B) has the same sign as that of g(β). Note that,

g′(β) =
(
(1− α)t+ α

)
(1− t) ln t ln

(1− β)t+ β

(1− α)t+ α
+ (α− γ(t))(t− 1)2 ln t,

g′′(β) =
(1− α)t+ α

(1− β)t+ β
(1− t)2 ln t,

where γ(t) is defined in (4.7). Therefore, for t > 1, g(β) is concave upward. Furthermore, since
limβ→α g(β) = 0, one has, for t > 1,

(i) if α < γ(t), then limβ→α g
′(β) < 0, and hence, there exists a unique β1 > α such that

g(β) < 0 for β ∈ (α, β1) and g(β) > 0 for β > β1;

(ii) if α ≥ γ(t), then limβ→α g
′(β) ≥ 0, and hence, g(β) > 0 for β > α.
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It remains to show that β1 < 1, which is implied by g(1) > 0. For t > 1, set

f(α) := g(1) = −((1− α)t+ α) ln t ln((1− α)t+ α) + (1− α)(t− 1)2.

It follows from f ′′(α) = − (1−t)2 ln t
(1−α)t+α < 0 that f(α) is concave downward for t > 1. Note that

f(1) = 0. Thus, g(1) > 0 is implied by f(0) ≥ 0. Set now ρ(t) := f(0) = −t(ln t)2 + (t − 1)2.
Then,

ρ′(t) = −(ln t)2 − 2 ln t+ 2(t− 1) and ρ′′(t) =
2

t
(t− 1− ln t) > 0.

Since ρ(1) = ρ′(1) = 0 and ρ′′(t) > 0 for t > 1, one concludes that ρ(t) = f(0) > 0.

Theorem 4.7. Suppose B = 1 where B is in (4.6). Then, J10J11 < 0 and J20J21 > 0.

Proof. It follows from the formulas (4.4) for Jk0’s, (4.5) for Jk1’s and Lemma 4.5.

Theorem 4.8. Suppose B 6= 1 where B is in (4.6). Let V 1
q and V 2

q be as

V 1
q = V 1

q (L,R) = − lnL− lnR

z2(1−B)
and V 2

q = V 2
q (L,R) = − lnL− lnR

z1(1−B)
; (4.8)

that is, z2(1−B)V 1
q + lnL− lnR = 0 and z1(1−B)V 2

q + lnL− lnR = 0.
Then, for t = L/R > 1, A < 0 where A is in (4.6), and

(i) if α < γ(t) where γ(t) is in (4.7) and β ∈ (α, β1), then V 1
q < 0 < V 2

q ; and,

(i1) for V ∈ (V 1
q , V

2
q ), J10J11 < 0 and J20J21 > 0;

(i2) for V < V 1
q , J10J11 > 0 and J20J21 > 0;

(i3) for V > V 2
q , J10J11 < 0 and J20J21 < 0;

or equivalently, for V > V 1
q , (small) positive Q0 reduces |J1| and, for V < V 1

q , (small)
positive Q0 strengthens |J1|; and for V > V 2

q , (small) positive Q0 reduces |J2| and, for
V < V 2

q , (small) positive Q0 strengthens |J2|;

(ii) if either α < γ(t) and β ∈ (β1, 1) or α ≥ γ(t), then V 1
q > 0 > V 2

q ; and,

(ii1) for V ∈ (V 2
q , V

1
q ), J10J11 < 0 and J20J21 > 0;

(ii2) for V > V 1
q , J10J11 > 0 and J20J21 > 0;

(ii3) for V < V 2
q , J10J11 < 0 and J20J21 < 0;

or equivalently, for V < V 1
q , (small) positive Q0 reduces |J1| and, for V > V 1

q , (small)
positive Q0 strengthens |J1|; and for V < V 2

q , (small) positive Q0 reduces |J2| and, for
V > V 2

q , (small) positive Q0 strengthens |J2|;

For t = L/R < 1, A > 0, and

(iii) if 1− β < γ(1/t) and α ∈ (α1, β), then V 1
q > 0 > V 2

q ; and,

(iii1) for V ∈ (V 2
q , V

1
q ), J10J11 < 0 and J20J21 > 0;

(iii2) for V > V 1
q , J10J11 > 0 and J20J21 > 0;

(iii3) for V < V 2
q , J10J11 < 0 and J20J21 < 0;

or equivalently, for V < V 1
q , (small) positive Q0 reduces |J1| and, for V > V 1

q , (small)
positive Q0 strengthens |J1|; and for V < V 2

q , (small) positive Q0 reduces |J2| and, for
V > V 2

q , (small) positive Q0 strengthens |J2|;
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(iv) if either 1− β < γ(1/t) and α ∈ (0, α1) or 1− β ≥ γ(1/t), then V 1
q < 0 < V 2

q ; and,

(iv1) for V ∈ (V 1
q , V

2
q ), J10J11 < 0 and J20J21 > 0;

(iv2) for V < V 1
q , J10J11 > 0 and J20J21 > 0;

(iv3) for V > V 2
q , J10J11 < 0 and J20J21 < 0;

or equivalently, for V > V 1
q , (small) positive Q0 reduces |J1| and, for V < V 1

q , (small)
positive Q0 strengthens |J1|; and for V > V 2

q , (small) positive Q0 reduces |J2| and, for
V < V 2

q , (small) positive Q0 strengthens |J2|.

Proof. We will establish the statement for case (i1) with t = L/R > 1. The others can be
established in the similar way.

It follows from Lemma 4.6 and z1 > 0 > z2 that, for this case, z2(1 − B) > 0 > z1(1 − B).
Thus, from (4.8), one gets V 1

q < 0 < V 2
q . Furthermore, for V ∈ (V 1

q , V
2
q ), one has z2(1−B)V +

lnL− lnR > 0 and z1(1−B)V + lnL− lnR > 0. Since A < 0, one concludes that

A(z2(1−B)V + lnL− lnR)

(z1 − z2)H(1)(lnL− lnR)2
< 0 and

A(z1(1−B)V + lnL− lnR)

(z2 − z1)H(1)(lnL− lnR)2
> 0. (4.9)

Note that, from (4.4), Jk0 is a scalar multiple of µδk with positive multiplier. The claim in (i1)
then follows from (4.5) and (4.9).

Proposition 4.9. The potentials V 1
q (L,R) and V 2

q (L,R) scale invariantly in (L,R).

Proof. This follows from the expressions (4.8) for V 1
q and V 2

q and that B = B(L,R) scales
invariantly in (L,R) as in Lemma 4.1.

4.3 Dependence of magnitudes of Jk1 on channel geometry

We now analyze how magnitudes of Jk1 depend on the channel geometry (α, β) and the boundary
condition (V,L,R). It turns out that there is a common feature that is essentially independent
of the boundary condition (V,L,R).

Recall that (α, β) ∈ Ω := {0 ≤ α ≤ β ≤ 1}. Write

J11 =
p1(α, β)µδ1(V ;L,R)

kBT (z1 − z2)H(1)(lnL− lnR)2
and J21 =

p2(α, β)µδ2(V ;L,R)

kBT (z2 − z1)H(1)(lnL− lnR)2

where

p1(α, β) =
(α− β)(L−R)2(z2V + lnL− lnR)

((1− α)L+ αR)((1− β)L+ βR)(lnL− lnR)
− z2V ln

(1− β)L+ βR

(1− α)L+ αR
,

p2(α, β) =
(α− β)(L−R)2(z1V + lnL− lnR)

((1− α)L+ αR)((1− β)L+ βR)(lnL− lnR)
− z1V ln

(1− β)L+ βR

(1− α)L+ αR
.

Lemma 4.10. If γ∗1 = γ(L/R) − 1
z2V

∈ (0, 1) where γ(t) ∈ (0, 1) is defined in (4.7), then
|p1(α, β)| attains its maximum at either (0, γ∗1) or (γ∗1 , 1). Otherwise, |p1(α, β)| attains its
maximum at (0, 1).

Similarly, if γ∗2 = γ(L/R)− 1
z1V
∈ (0, 1), then |p2(α, β)| attains its maximum at either (0, γ∗1 )

or (γ∗1 , 1). Otherwise, |p2(α, β)| attains its maximum at (0, 1).

Proof. We prove the statement for p1(α, β). Note that p1(α, α) = 0.

∂αp1(α, β) =
(L−R)2(z2V + lnL− lnR)

((1− α)L+ αR)2(lnL− lnR)
+ z2V

R− L
(1− α)L+ αR

,

∂βp1(α, β) =− (L−R)2(z2V + lnL− lnR)

((1− β)L+ βR)2(lnL− lnR)
− z2V

R− L
(1− β)L+ βR

.
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Therefore, any critical point (α, β) satisfies α = β where p1 vanishes. Hence, the maximum of
|p1(α, β)| on Ω attains on the boundary

{α = 0, β ∈ [0, 1]} ∪ {α ∈ [0, 1], β = 1}.

On the portion of the boundary {α = 0, β ∈ [0, 1]},

p1(0, β) =− β(L−R)2(z2V + lnL− lnR)

L((1− β)L+ βR)(lnL− lnR)
− z2V ln

(1− β)L+ βR

L
,

∂βp1(0, β) =− (L−R)2(z2V + lnL− lnR)

((1− β)L+ βR)2(lnL− lnR)
− z2V

R− L
(1− β)L+ βR

.

The critical point of p1(0, β) is

β = γ∗1 =
L

L−R
− 1

lnL− lnR
− 1

z2V
.

To have γ∗1 ∈ (0, 1), necessarily,

−γ(t) < − 1

z2V
< 1− γ(t) or γ(t)− 1 <

1

z2V
< γ(t)

where t = L/R and γ(t) ∈ (0, 1) is defined in (4.7).
On the boundary {α ∈ [0, 1], β = 1},

p1(α, 1) =
(α− 1)(L−R)2(z2V + lnL− lnR)

R((1− α)L+ αR)(lnL− lnR)
− z2V ln

R

(1− α)L+ αR
,

∂αp1(α, 1) =
(L−R)2(z2V + lnL− lnR)

((1− α)L+ αR)2(lnL− lnR)
+ z2V

R− L
(1− α)L+ αR

.

The critical point of p1(α, 1) is clearly α = γ∗1 .
It remains to compare p1(0, γ∗1 ), p1(γ∗1 , 1) and p1(0, 1) for extrema of p1(α, β).
Direct computation gives

p1(0, γ∗1 ) =− (1− wL + lnwL) z2V, p1(γ∗1 , 1) = (1− wR + lnwR) z2V,

where

wL =
(L−R)(z2V + lnL− lnR)

z2V (lnL− lnR)L
and wR =

(L−R)(z2V + lnL− lnR)

z2V (lnL− lnR)R
.

It is easy to check that 1 − w + lnw ≤ 0 for any w > 0. Therefore, p1(0, γ∗1 ) and p1(γ∗1 , 1)
have opposite signs. Note also that, for any γ ∈ [0, 1], p1(0, γ) + p1(γ, 1) = p1(0, 1). We thus
conclude that, in the case that γ∗1 ∈ (0, 1), |p1(α, β)| attains its maximum at either (0, γ∗1) or
(γ∗1 , 1); otherwise, |p1(α, β)| attains its maximum at (0, 1).

In summary, one has

Proposition 4.11. If γ∗1 6∈ [0, 1], then the maximum of |J11| occurs when (α, β) = (0, 1). If
γ∗1 ∈ [0, 1], then the maximum of |J11| occurs when either (α, β) = (0, γ∗1 ) or (α, β) = (γ∗1 , 1).

If γ∗2 6∈ [0, 1], then the maximum of |J21| occurs when (α, β) = (0, 1). If γ∗2 ∈ [0, 1], then the
maximum of |J21| occurs when either (α, β) = (0, γ∗2 ) or (α, β) = (γ∗2 , 1).

Recall that α = H(a)/H(1) and β = H(b)/H(1). It is easy to see that α ≈ 0 and β ≈ 1 can
be realized in two ways: (i) (a, b) ≈ (0, 1) and h(x) is uniform for x ∈ (0, 1); (ii) b− a� 1 and
h(x) for x ∈ (a, b) is much smaller than h(x) for x 6∈ [a, b]. The latter means that the neck of the
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channel to which the permanent charge is confined is short and narrow. Note that, in order to
produce the same permanent charge density Q0, it requires much more numbers of charges for
setting (i) than for setting (ii). In this sense, setting (ii) for ion channels is optimal for effects
of permanent charges on ionic flows.

One can also check that, if γ∗k ∈ [0, 1], then the “optimal” setting is as follows:

• If (α, β) = (γ∗k , 1) provides the maximum of |Jk1|, then there exists 0 < c < a such that
b− c� 1, and h(x) is small for x ∈ [c, b] (in particular, for x ∈ [a, b]) and large otherwise;

• If (α, β) = (0, γ∗k) provides the maximum of |Jk1|, then there exists b < c < 1 such that
c− a� 1, and h(x) is small for x ∈ [a, c] and large otherwise.

Remark 4.12. In all cases, h(x) should be small for x ∈ [a, b] and b − a � 1; that is, the
channel neck to which the permanent charge is confined should be short and narrow.

4.4 Permanent charge effects on I-V relation

It follows from (4.4) and (4.5) that

I0 =
L−R

H(1)(lnL− lnR)

(
D1

µδ1
kBT

−D2
µδ2
kBT

)
, I1 =

A

(z1 − z2)H(1)
P (V ;L,R), (4.10)

where, with λ = V/(lnL− lnR),

P =P (V ;L,R) = z1z2(z1D1 − z2D2)(1−B)λ2

+ (z21D1 − z22D2 + z1z2(D1 −D2)(1−B))λ+ (z1D1 − z2D2),
(4.11)

and A and B are defined in (4.6).

Theorem 4.13. For Q0 = 0, the zeroth order in ε approximation of the reversal potential Vrev
is given by

Vrev = − D1 −D2

z1D1 − z2D2
(lnL− lnR).

Hence, I0 > 0 if V > Vrev and I0 < 0 if V < Vrev.

Proof. Recall that V = Vrev is such that I0 = 0. The latter is equivalent to, from (4.10),

D1
µδ1
kBT

−D2
µδ2
kBT

= (z1D1 − z2D2)Vrev + (D1 −D2)(lnL− lnR) = 0.

The formula for Vrev then follows.

We now examine the sign of I1 to determine the leading effects of the permanent charge on
the current. Note that, if B = 1, then

I1 =
A

(z1 − z2)H(1)(lnL− lnR)

(
(z21D1 − z22D2)V + (z1D1 − z2D2)(lnL− lnR)

)
.

For z21D1 − z22D2 6= 0, let

V 0 = − z1D1 − z2D2

z21D1 − z22D2
(lnL− lnR).

Theorem 4.14. Suppose B = 1.
If z21D1 − z22D2 = 0, then I1 > 0 for L < R and I1 < 0 for L > R.
If z21D1 − z22D2 < 0, then I1 > 0 for V > V 0 and I1 < 0 for V < V 0.
If z21D1 − z22D2 > 0, then I1 > 0 for V < V 0 and I1 < 0 for V > V 0.
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If B 6= 1, then P = 0, where P is defined in (4.11), is a quadratic equation in λ whose
discriminant is ∆ = z21z

2
2(D1 −D2)2(1−B − r−)(1−B − r+), where r− < r+ ≤ 0 are given by

r− =
(z1
√
D1 − z2

√
D2)2

z1z2(
√
D1 −

√
D2)2

and r+ =
(z1
√
D1 + z2

√
D2)2

z1z2(
√
D1 +

√
D2)2

.

Note that, if D1 = D2, then

r− = −∞ and r+ =
(z1 + z2)2

4z1z2
.

Theorem 4.15. For the factor I1 in (4.10), one has the following results.

(i) If 1 − B ∈ (r−, r+), then P (V ;L,R) > 0, and hence, I1 > 0 for L < R and I1 < 0 for
L > R.

(ii) If 1−B = r±, then there is one potential V 0
q = V 0

q (L,R) such that

(ii1) if V = V 0
q , then P (V 0

q ;L,R) = 0, and hence, I1 = 0;

(ii2) if V 6= V 0
q , then P (V ;L,R) > 0, and hence, I1 > 0 for L < R and I1 < 0 for L > R.

(iii) If 1−B 6∈ [r−, r+], then there are two potentials V ±q = V ±q (L,R) such that

(iii1) if V = V ±q , then P (V ±q ;L,R) = 0, and hence, I1 = 0;

(iii2) if V ∈ (V −q , V
+
q ) and 1− B < 0, then P (V ;L,R) < 0, and hence, I1 > 0 for L > R

and I1 < 0 for L < R; if V ∈ (V −q , V
+
q ) and 1 − B > 0, then P (V ;L,R) > 0, and

hence, I1 > 0 for L < R and I1 < 0 for L > R;

(iii3) if V 6∈ [V −q , V
+
q ] and 1 − B > 0, then P (V ;L,R) < 0, and hence, I1 > 0 for L > R

and I1 < 0 for L < R; if V 6∈ [V −q , V
+
q ] and 1 − B < 0, then P (V ;L,R) > 0, and

hence, I1 > 0 for L < R and I1 < 0 for L > R.

Proof. The statements follow from the sign of P determined by the conditions in each case and
that A has the opposite signs as that of L−R in Lemma 4.5.

Remark 4.16. In Theorem 4.15, conditions in terms of 1 − B can be made in terms of α, β,
L and R incorporating with Lemma 4.6.

Proposition 4.17. The critical potentials Vrev(L,R), V 0
q (L,R) and V ±q (L,R) scale invariantly

in (L,R).

Proof. The scaling invariance of Vrev(L,R) follows from the formula for Vrev(L,R). Since B is
scaling invariant and other quantities in the coefficients of P are independent of L and R, the
scaling invariance of the other critical potentials, as roots of P (V ;L,R) = 0, follows directly.

5 Concluding Remarks

In this work, we analyzed effects of a simple permanent charge profile with a small nonzero
portion and channel geometry on individual fluxes and on I-V relations for ionic flows with two
ion species via a quasi-one-dimensional classical PNP model.

Without permanent charges, the flux of one ion species is independent of the other based
on the classical PNP models for dilute mixtures (as is well-known); for PNP with hard-sphere
potentials, the flux of one ion species does depend on the other in the first order of characteristic
ionic radius (see, e.g. [27, 34, 38]) due to ion-to-ion interactions. In this case, for both classical
PNP and PNP with hard-sphere potentials studied in above mentioned papers, only the average
quantity H(1) of the channel geometry affects the fluxes.
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With the presence of a permanent charge, as expected, the classical PNP model also shows
the dependence of the flux of one ion species on the other ion species. Most importantly,
effects of permanent charges on ionic flows could be very complicated, depending the interplays
between boundary conditions and the channel geometry. Our analysis leads to an interesting
conclusion that, to optimize the effects of a permanent charge, the neck of the channel to which
the permanent charge is confined should be short and narrow.

For large |Q0| or a more general form of a piecewise constant permanent charge Q(x), al-
though a governing system for singular orbits is available ([14, 36]), it is very challenging to
obtain reasonably explicit expressions for the fluxes. It would extremely important for a com-
prehensive analysis of permanent charge effect if this difficulty can be overcome in some way.
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