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Abstract. We study a quasi-one-dimensional steady-state Poisson-Nernst-
Planck model for ionic flows through membrane channels with fixed boundary

ion concentrations and electric potentials. We consider two ion species, one pos-
itively charged and one negatively charged, and assume zero permanent charge.

Bikerman’s local hard-sphere potential is included in the model to account for

ion size effects on the ionic flow. The model problem is treated as a boundary
value problem of a singularly perturbed differential system. Our analysis is

based on the geometric singular perturbation theory but, most importantly,

on specific structures of this concrete model. The existence of solutions to the
boundary value problem for small ion sizes is established and, treating the ion

sizes as small parameters, we also derive approximations of individual fluxes

and I-V (current-voltage) relations, from which qualitative properties of ionic
flows related to ion sizes are studied. A detailed characterization of compli-

cated interactions among multiple and physically crucial parameters for ionic

flows, such as boundary concentrations and potentials, diffusion coefficients
and ion sizes, is provided.

1. Introduction. We study the dynamics of ionic flows, the electrodiffusion of
charges, through ion channels via a quasi-one-dimensional steady-state Poisson-
Nernst-Planck (PNP) system. As a basic macroscopic model for electrodiffusion of
charges, particularly for ionic flows through ion channels ([8, 10, 15, 16, 17, 18, 19,
26, 27, 31, 38, 39, 62, 64, 72, 73, 74], etc.), under various reasonable conditions, PNP
systems can be derived as reduced models from molecular dynamic models ([80]),
from Boltzmann equations ([2]), and from variational principles ([34, 36, 37]).

The simplest PNP system is the classical Poisson-Nernst-Planck (cPNP) system
that includes only the ideal components of the electrochemical potentials. It has
been simulated ([6, 7, 8, 9, 11, 26, 27, 30, 32, 33, 39, 40, 41, 48, 61, 77, 88]) and
analyzed ([1, 3, 4, 20, 21, 24, 43, 53, 55, 56, 59, 65, 75, 76, 81, 82, 83, 84, 86, 87])
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to a great extent. However, a major weakness of the cPNP is that it treats ions as
point-charges, which is reasonable only for near infinite dilute ionic mixtures. To
study the ion size effect on ionic flows, in particular, for ion species with the same
valence but different ion sizes, for example, Na+ (sodium) and K+ (potassium),
one has to consider excess (beyond the ideal) components in the electrochemical
potential. One way is to include hard-sphere (HS) potentials. PNP models with ion
size effects have been investigated computationally with great successes ([13, 25, 27,
29, 34, 35, 36, 37, 47, 89], etc.), and have been mathematically analyzed (see, for
example, [22, 42, 49, 50, 51, 58]).

In [51], the authors provided an analytical treatment of a quasi-one-dimensional
version of PNP system with a HS potential. They studied the case where two
oppositely charged ions are involved for the same ion channel with electroneutrality
(zero net charge) boundary conditions, the permanent charge can be ignored, and
a local HS potential derived from Rosenfeld’s nonlocal one is included. The authors
treated ion sizes as small parameters, and derived an approximation of the I-V
relation. Furthermore, the approximate I-V relation allows them to establish the
following results.

(i) There is a critical potential Vc so that, if V > Vc, then ion sizes enhance the
current I; if V < Vc, then ion sizes reduce the current I.

(ii) There is another critical potential V c so that, if V > V c, then the current
I increases with respect to λ = d2/d1 where d1 and d2 are, respectively, the
diameters of the positively and negatively charged ions; if V < V c, then the
current I decreases in λ.

(iii) Important scaling laws of I-V relations and critical potentials in boundary
concentrations are obtained; that is,
(a) the contribution to the I-V relation from the ideal component scales lin-

early in boundary concentrations;
(b) the contribution (up to first order in ionic diameters) to the I-V relation

from the HS component scales quadratically in boundary concentrations;
(c) both Vc and V c scale invariantly in boundary concentrations.

In this paper, we study a quasi-one-dimensional version of PNP type system
with a local HS model proposed by Bikerman ([5]). Bikerman’s model is one of the
earliest local models for HS potentials. The problem we study here has basically
the same setting as that in [51] except that we take a different local model. We
study the PNP system with Bikerman’s local HS potential for two purposes:

(I) To compare our results with those obtained in [51];
(II) To examine ion size effects on individual fluxes that provide detailed informa-

tion on the interactions among different ion species within the channel. This
is the main contribution compared to [51].

The rest of this paper is organized as follows. In Section 2, we describe the
quasi-one-dimensional PNP model of ionic flows, Bikerman’s local HS potential,
the boundary value problem (BVP) of the singularly perturbed PNP-HS system,
and the basic assumptions.

In Section 3, the existence and (local) uniqueness result for the BVP is estab-
lished in the framework of geometric singular perturbation theory. Based on the
analysis in Section 3 and treating the ion sizes as small parameters, approximations
of individual fluxes and the I-V (current-voltage) relations are derived, from which
the ion size effect on ionic flows is analyzed in detail. This leads to our main interest
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studied in Section 4, which contains four subsections. In Subsection 4.1, we exam-
ine the ion size effect on individual fluxes. We identify four critical potentials or
voltages, denoted by Vkc and V kc, k = 1, 2, respectively. The values V1c and V2c are
the potentials that balance the ion size effect on the individual fluxes of charge, and
the values V 1c and V 2c are the potentials that separate the relative size effect on
the individual fluxes of charge (see Definition 4.4, Theorem 4.7 and Theorem 4.8).
More interestingly, under electroneutrality conditions, we observed that Vkc = V kc

for k = 1, 2, while it is not true without electroneutrality conditions (see Corollary
4.5). Subsection 4.2 deals with the ion size effect on the total flow rate of charge
(the I-V relations). Two critical potentials or voltages Vc and V c are also identified.
In particular, the two critical potential values are identical (see Definition 4.11).
The roles of these critical potentials in characterizing ion size effects on ionic flows
are discussed. In subsection 4.3, under electroneutrality conditions, the relationship
among those critical potentials Vkc, k = 1, 2 for individual fluxes and Vc for the
I-V relations is studied in terms of multiple physical parameters such as boundary
concentrations, boundary potentials and diffusion coefficients (see Lemma 4.19).
The distinct effects of the nonlinear interplay between these physical parameters
are characterized. In Subsection 4.4, a special case of ion size effects on ionic flows
is considered.

We remark that, under electroneutrality boundary conditions, each of these criti-
cal potentials separates the potential into two regions over which the ion size effects
are qualitatively opposite to each other (see Theorems 4.7, 4.8, and 4.15). Also,
in the absence of electroneutrality, it is rather surprising that the roles of critical
potentials on ion size effects are significant different: the opposite effects of ion
sizes separated by those critical potentials depend on other quantities in terms of
boundary conditions (see Proposition 4.18).

Finally, we would like to point out that, under electroneutrality conditions, as
what we expect, the results related to ion size effects on the I-V relations are
similar to those obtained in [51]. However, our analysis of the ion size effects on the
individual fluxes provides detailed information on the interactions among different
ion species. We believe our results will provide useful insights for numerical and
even experimental studies of ionic flows through membrane channels.

2. Problem Setup.

2.1. A quasi-one-dimensional steady-state PNP type system. The channel
is assumed to be narrow so that it can be effectively viewed as a one-dimensional
channel [0, l] where l, typically in the range of 10− 20 nanometers, is the length of
the channel together with the baths that the channel links. A quasi-one-dimensional
steady-state PNP model for ion flows of n ion species though a single channel is (see
[57, 61])

1

A(X)

d

dX

(
εr(X)ε0A(X)

dΦ

dX

)
= −e

( n∑
j=1

zjCj(X) +Q(X)

)
,

dJi
dX

= 0, −Ji =
1

kBT
Di(X)A(X)Ci(X)

dµi
dX

, i = 1, 2, · · · , n

(2.1)

where X ∈ [0, l], e is the elementary charge, kB is the Boltzmann constant, T is the
absolute temperature; Φ is the electric potential, Q(X) is the permanent charge of
the channel, εr(X) is the relative dielectric coefficient, ε0 is the vacuum permittivity;
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A(X) is the area of the cross-section of the channel over the point X ∈ [0, l]; for the
ith ion species, Ci is the concentration (number of ith ions per volume), zi is the
valence (number of charges per particle) that is positive for cations and negative
for anions, µi is the electrochemical potential, Ji is the flux density, and Di(X) is
the diffusion coefficient. The boundary conditions are, for i = 1, 2, · · · , n,

Φ(0) = V, Ci(0) = Li > 0; Φ(l) = 0, Ci(l) = Ri > 0. (2.2)

2.2. Excess potential and a local hard-sphere model. The electrochemical
potential µi(X) for the ith ion species consists of the ideal component µidi (X), the
excess component µexi (X) and the concentration-independent component µ0

i (X)
(e.g. a hard-well potential):

µi(X) = µ0
i (X) + µidi (X) + µexi (X)

where

µidi (X) = zieΦ(X) + kBT ln
Ci(X)

C0
(2.3)

with some characteristic number density C0. As mentioned in the introduction,
cPNP system takes into consideration of the ideal component µidi (X) only. This
component reflects the collision between ion particles and water (medium) molecules.
It has been accepted that cPNP system is a reasonable model in, for example, dilute
cases under which ion particles can be treated as point-charges and ion-to-ion inter-
actions can be more or less ignored. The excess electrochemical potential µexi (X)
accounts for finite size effects of charges (see, e.g., [69, 70]).

In this paper, we study the PNP system including a local hard-sphere (LHS)
chemical potential, proposed by Bikerman ([5]) to account for the finite size effect.
Bikerman’s model is, for i = 1, 2, . . . , n,

µBiki (X) =− kBT ln

(
1−

n∑
j=1

vjCj(X)

)
, (2.4)

where vj is the volume of a single jth ion species.

Remark 2.1. Since ci is the number density of ith ion species, it follows that∑n
j=1 vjcj < 1. In this sense, Bikerman’s LHS takes into consideration of nonzero

ion sizes. It should be pointed out though Bikerman’s LHS is not ion specific since
it is the same for all ion species.

2.3. The BVP and assumptions. The main focus of this paper is to examine
the qualitative properties of ion size effects on ionic flows via BVP (2.1)-(2.2) with
LHS model (2.4). We will take essentially the same setting as that in [51] except
that we use Bikerman’s LHS (2.4). More precisely,

(i) We consider two ion species (n = 2) with z1 > 0 and z2 < 0;
(ii) The permanent charge is set to be zero: Q(X) = 0;

(iii) For the electrochemical potential µi, in addition to the ideal component µidi ,
we also include the LHS potential µBiki in (2.4);

(iv) The relative dielectric coefficient and the diffusion coefficients are assumed to
be constants, that is, εr(X) = εr and Di(X) = Di.

We first make a dimensionless rescaling following ([24]).
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Set C0 = max{Li,Ri : i = 1, 2} and let

ε2 =
εrε0kBT

e2l2C0
, x =

X

l
, h(x) =

A(X)

l2
, Di = lC0Di;

φ(x) =
e

kBT
Φ(X), ci(x) =

Ci(X)

C0
, Ji =

Ji
Di

;

V =
e

kBT
V, Li =

Li
C0

; Ri =
Ri
C0
.

(2.5)

System (2.1) becomes, with the substitution (2.3) for µidi ,

ε2

h(x)

d

dx

(
h(x)

d

dx
φ

)
= −(z1c1 + z2c2),

dJi
dx

= 0,

h(x)
dc1
dx

+ h(x)z1c1
dφ

dx
+
h(x)c1(x)

kBT

d

dx
µBik1 (x) = −J1,

h(x)
dc2
dx

+ h(x)z2c2
dφ

dx
+
h(x)c2(x)

kBT

d

dx
µBik2 (x) = −J2.

(2.6)

It follows from (2.4) that

1

kBT
µBiki (x) =− ln

(
1− ν1c1(x)− ν2c2(x)

)
where νj = vjC0. (2.7)

Substituting (2.7) into system (2.6), we obtain the BVP

ε2

h(x)

d

dx

(
h(x)

d

dx
φ

)
= −(z1c1 + z2c2),

dJi
dx

= 0,

dc1
dx

= −f1(c1, c2; ν1, ν2)
dφ

dx
− 1

h(x)
g1(c1, J1, J2; ν1, ν2),

dc2
dx

= f2(c1, c2; ν1, ν2)
dφ

dx
− 1

h(x)
g2(c2, J1, J2; ν1, ν2),

(2.8)

with boundary conditions, for i = 1, 2,

φ(0) = V, ci(0) = Li; φ(1) = 0, ci(1) = Ri, (2.9)

where

f1(c1, c2; ν1, ν2) =(z1 − z1ν1c1 − z2ν2c2)c1,

f2(c1, c2; ν1, ν2) =− (z2 − z1ν1c1 − z2ν2c2)c2,

g1(c1, J1, J2; ν1, ν2) =J1 − (ν1J1 + ν2J2)c1,

g2(c2, J1, J2; ν1, ν2) =J2 − (ν1J1 + ν2J2)c2.

(2.10)

For a solution of BVP (2.8)-(2.9), the total flux of charge or current I is

I = z1J1 + z2J2 = z1D1J1 + z2D2J2. (2.11)

For fixed Li’s and Ri’s, formula (2.11) provides a relation of the current I on the
voltage V . This relation is the so-called I-V relation (current-voltage relation).

The BVP (2.8)-(2.9) will be analyzed in Section 3 based on the assumption
that the dimensionless parameter ε is small so that system (2.8) can be treated
as a singularly perturbed system with ε as the singular parameter. For typical
ion channel problems, physical range for the parameter ε is 10−2 − 10−6, which
is smaller for crowded ionic mixtures (large C0) and larger for less crowded ionic
mixtures. It is further assumed that the dimensionless parameters νi’s are small;
typical physical range for νi = viC0 is 10−2 − 10−4 with 10−2 corresponding to
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crowded ionic mixtures, say, C0 ∼ 10 M (molar) and with 10−4 to less crowded
ionic mixtures, say, C0 ∼ 100 mM. From the analysis of the BVP, we will obtain
approximations for both Ji’s and I-V relations to study ion size effects on ionic
flows.

3. Geometry singular perturbation theory for (2.8)–(2.9). We will rewrite
system (2.8) into a standard form for singularly perturbed systems and convert BVP
(2.8)-(2.9) to a connecting problem. Generally, there is no unique way to write a
second order singular perturbed equation (the Poisson equation for φ in (2.8)) to a
system of first order equations. Different choices result in different ε = 0 limiting
systems. It is the ε = 0 limiting systems that govern the viable choices. Ideally, one
would like to obtain a normally hyperbolic (NH) slow manifold, if possible. The
choice used in this paper below (introduced first in [53] to the best of our knowledge)

results in a NH slow manifold while the “natural” choice φ̇ = ε2u would not.
Denote the derivative with respect to x by overdot and introduce u = εφ̇ and

τ = x. System (2.8) becomes

εφ̇ =u, εu̇ = −z1c1 − z2c2 − ε
hτ (τ)

h(τ)
u,

εċ1 =− f1(c1, c2; ν1, ν2)u− ε

h(τ)
g1(c1, J1, J2; ν1, ν2),

εċ2 =f2(c1, c2; ν1, ν2)u− ε

h(τ)
g2(c2, J1, J2; ν1, ν2)

J̇1 =J̇2 = 0, τ̇ = 1.

(3.1)

System (3.1) is the slow system and its phase space is R7 with state variables
(φ, u, c1, c2, J1, J2, τ).

For ε > 0, the rescaling x = εξ of the independent variable x gives rise to the
fast system

φ′ =u, u′ = −z1c1 − z2c2 − ε
hτ (τ)

h(τ)
u,

c′1 =− f1(c1, c2; ν1, ν2)u− ε

h(τ)
g1(c1, J1, J2; ν1, ν2),

c′2 =f2(c1, c2; ν1, ν2)u− ε

h(τ)
g2(c2, J1, J2; ν1, ν2),

J ′1 =J ′2 = 0, τ ′ = ε,

(3.2)

where prime denotes the derivative with respect to the variable ξ.
For ε > 0, slow system (3.1) and fast system (3.2) have exactly the same phase

portrait. But their limiting systems at ε = 0 are different. System of (3.1) with
ε = 0 is called the limiting slow system, whose orbits are called slow orbits or
regular layers. System of (3.2) with ε = 0 is the limiting fast system, whose orbits
are called fast orbits or singular (boundary and/or internal) layers. In this context,
a singular orbit of system (3.1) or (3.2) is defined to be a continuous and piecewise
smooth curve in R7 that is a union of finitely many slow and fast orbits. Very
often, limiting slow and fast systems provide complementary information on state
variables. Therefore, the main task of singularly perturbed problems is to patch
the limiting information together to form a solution for the entire ε > 0 system.
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Let BL and BR be the subsets of the phase space R7 defined by

BL ={(V, u, L1, L2, J1, J2, 0) ∈ R7 : arbitrary u, J1, J2},
BR ={(0, u,R1, R2, J1, J2, 1) ∈ R7 : arbitrary u, J1, J2}.

(3.3)

Then the original BVP is equivalent to the connecting problem, namely, finding an
orbit of (3.1) or (3.2) from BL to BR (see, for example, [44]).

In what follows, we will consider the equivalent connecting problem for system
(3.1) or (3.2). The construction of a connecting orbit involves two main steps
([12, 44, 45, 46, 52, 54, 78, 79, 85]):

Step I: We construct a singular orbit to the connecting problem.

Step II: We apply geometric singular perturbation theory, particularly, the Exchange
Lemmas, to show that there is a unique connecting orbit near the singular orbit for
small ε > 0.

3.1. Geometric construction of singular orbits. Following the idea in [20, 53,
55], we will first construct a singular orbit on [0, 1] that connects BL to BR. Such
an orbit will generally consist of two boundary layers and a regular layer.

3.1.1. Limiting fast dynamics and boundary layers. By setting ε = 0 in (3.1), we
obtain the slow manifold

Z = {u = 0, z1c1 + z2c2 = 0}.

By setting ε = 0 in (3.2), we get the limiting fast system

φ′ =u, u′ = −z1c1 − z2c2, c′1 = −f1(c1, c2; ν1, ν2)u,

c′2 =f2(c1, c2; ν1, ν2)u, J ′1 = J ′2 = 0, τ ′ = 0.
(3.4)

Note that the slow manifold Z is the set of equilibria of (3.4).

Lemma 3.1. For system (3.4), the slow manifold Z is normally hyperbolic.

Proof. Even though the LHS models used in [51] and in this paper are different,
the proof of this result is the same, word by word, as that in [51]. For convenience
of the reader, we provide the key ingredients here.

The linearization of (3.4) at each point of (φ, 0, c1, c2, J1, J2, τ) ∈ Z has five zero
eigenvalues associated with the set of equilibria Z with dim(Z) = 5, and the other
two eigenvalues are

±
√
z1f1 − z2f2 = ±

√
z21c1 + z22c2.

Note that f1(c1, c2; ν1, ν2) has a factor c1 and f2(c1, c2; ν1, ν2) has a factor c2. It
follows from (c1, c2)-subsystem of (3.4) that {c1 > 0} and {c2 > 0} are invariant.
Since c1 and c2 have positive boundary values, c1 and c2 are positive for all x ∈ [0, 1].
Therefore, z1f1 − z2f2 > 0. Thus Z is normally hyperbolic.

We denote the stable (resp. unstable) manifold of Z by W s(Z) (resp. Wu(Z)).
Let ML be the collection of orbits from BL in forward time under the flow of system
(3.4) and let MR be the collection of orbits from BR in backward time under the
flow of system (3.4). Then, for a singular orbit connecting BL to BR, the boundary
layer at x = 0 must lie in NL = ML ∩W s(Z) and the boundary layer at x = 1
must lie in NR = MR ∩Wu(Z). In this subsection, we will determine the boundary
layers NL and NR, and their landing points ω(NL) and α(NR) on the slow manifold
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Z. The regular layer, determined by the limiting slow system in §3.1.2, will lie in
Z and connect ω(NL) at x = 0 and α(NR) at x = 1.

Recall the definitions of ν1 and ν2 from (2.7) and the discussion in the last
paragraph of Section 2. We will be interested in the situation that ν1 and ν2 are
small and treat (3.4) as a regular perturbation of that with ν1 = ν2 = 0. While ν1
and ν2 are small, their ratio is of order O(1). We thus set

ν1 = ν and ν2 = λν (3.5)

and look for solutions

Γ(ξ; ν) = (φ(ξ; ν), u(ξ; ν), c1(ξ; ν), c2(ξ; ν), J1(ν), J2(ν), τ)

of system (3.4) of the form

φ(ξ; ν) = φ0(ξ) + φ1(ξ)ν + o(ν), u(ξ; ν) = u0(ξ) + u1(ξ)ν + o(ν),

ci(ξ; d) = ci0(ξ) + ci1(ξ)ν + o(ν), Ji(ν) = Ji0 + Ji1ν + o(ν).
(3.6)

Substituting (3.6) into system (3.4), we obtain, for the zeroth order in ν,

φ′0 =u0, u′0 = −z1c10 − z2c20, c′10 = −z1c10u0,
c′20 =− z2c20u0, J ′10 = J ′20 = 0, τ ′ = 0,

(3.7)

and, for the first order in ν,

φ′1 =u1, u′1 = −z1c11 − z2c21,
c′11 =− z1u0c11 − z1c10u1 + (z1c10 + λz2c20)c10u0,

c′21 =− z2u0c21 − z2c20u1 + (z1c10 + λz2c20)c20u0,

J ′11 =J ′21 = 0, τ ′ = 0.

(3.8)

Recall that we are interested in Γ0(ξ; ν) ⊂ NL = ML ∩W s(Z) with Γ0(0; ν) ∈ BL
and Γ1(ξ; ν) ⊂ NR = MR ∩Wu(Z) with Γ1(0; ν) ∈ BR.

Proposition 3.2. Assume ν ≥ 0 is small.

(i) The stable manifold W s(Z) intersects BL transversally at points(
V, ul0 + ul1ν + o(ν), L1, L2, J1(ν), J2(ν), 0

)
,

and the ω-limit set of NL = ML

⋂
W s(Z) is

ω(NL) =
{

(φL0 + φL1 ν + o(ν), 0, cL10 + cL11ν + o(ν), cL20 + cL21ν + o(ν), J1(ν), J2(ν), 0)
}
,

where Ji(ν) = Ji0 + Ji1ν + o(ν), i = 1, 2, can be arbitrary and

φL0 =V − 1

z1 − z2
ln
−z2L2

z1L1
, z1c

L
10 = −z2cL20 = (z1L1)

−z2
z1−z2 (−z2L2)

z1
z1−z2 ,

ul0 =sgn(z1L1 + z2L2)

√
2

(
L1 + L2 +

z1 − z2
z1z2

(z1L1)
−z2

z1−z2 (−z2L2)
z1

z1−z2

)
;

φL1 =0, z1c
L
11 = −z2cL21 = z1c

L
10(L1 + λL2 − cL10 − λcL20),

ul1 =
1

uL0

(
λ

2
(L2 + cL20)(L2 − cL20) +

1

2
(L1 + cL10)(L1 − cL10)− cL10cL20 − cL11 − cL21

−z2(1− λ)

z1 + z2
e(z1+z2)(V−φ

L
0 )

)
.
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(ii) The unstable manifold Wu(Z) intersects BR transversally at points

(0, ur0 + ur1ν + o(ν), R1, R2, J1(ν), J2(ν), 1) ,

and the α-limit set of NR is

α(NR) =
{

(φR0 + φR1 ν + o(ν), 0, cR10 + cR11ν + o(ν), cR20 + cR21ν + o(ν), J1(ν), J2(ν), 1)
}
,

where Ji(ν) = Ji0 + Ji1ν + o(ν), i = 1, 2, can be arbitrary and

φR0 =− 1

z1 − z2
ln
−z2R2

z1R1
, z1c

R
10 = −z2cR20 = (z1R1)

−z2
z1−z2 (−z2R2)

z1
z1−z2 ,

ur0 =− sgn(z1R1 + z2R2)

√
2

(
R1 +R2 +

z1 − z2
z1z2

(z1R1)
−z2

z1−z2 (−z2R2)
z1

z1−z2

)
;

φR1 =0, z1c
R
11 = −z2cR21 = z1c

R
10(R1 + λR2 − cR10 − λcR20),

ur1 =
1

ur0

(
λ

2
(R2 + cR20)(R2 − cR20) +

1

2
(R1 + cR10)(R1 − cR10)− cR10cR20 − cR11 − cR21

−z2(1− λ)

z1 + z2
e−(z1+z2)φ

R
0

)
.

Proof. The stated result for system (3.7) has been obtained in [20, 53, 55]. For
system (3.8), one can check directly that it has three nontrivial first integrals:

F1 =
c11
c10

+ z1φ1 + c10 + λc20, F2 =
c21
c20

+ z2φ1 + c10 + λc20,

F3 =u0u1 − c11 − c21 −
λ

2
c220 −

1

2
c210 − c10c20 +

z2(1− λ)

z1 + z2
e(z1+z2)(V−φ0).

We now establish the results for φL1 , c
L
11, c

L
21 and ul1 for system (3.8). Those for

φR1 , c
R
11, c

R
21 and ur1 can be established in the similar way.

Note that φ1(0) = c11(0) = c21(0) = 0. Using the integrals F1 and F2, we have
c11
c10

+ z1φ1 + c10 + λc20 = L1 + λL2, and
c21
c20

+ z2φ1 + c10 + λc20 = L1 + λL2.

Therefore

c11 =c10(L1 + λL2 − c10 − λc20 − z1φ1), c21 = c20(L1 + λL2 − c10 − λc20 − z2φ1).

Taking the limit as ξ →∞, we have

φL1 =0, cL11 = cL10(L1 + λL2 − cL10 − λcL20), cL21 = cL20(L1 + λL2 − cL10 − λcL20).

In view of the relations z1c
L
10 + z2c

L
20 = z1c

L
11 + z2c

L
21 = 0, one can get the formulas

for cL11, c
L
21 and φL1 . We now derive the formula for ul1 = u1(0).

In view of F3(0) = F3(∞), we have

ul0u
l
1 − L1L2 −

λ

2
L2
2 −

1

2
L2
1 =− cL11 − cL21 − cL10cL20 −

λ

2

(
cL10
)2 − 1

2

(
cL10
)2

− z2(1− λ)

z1 + z2
e(z1+z2)(V−φ

L
0 ).

The formula for ul1 follows directly. This completes the proof.

We remark that, when z1L1 + z2L2 = 0, ul0 = 0. In this case, ul1 is defined as the
limit of its expression as z1L1 + z2L2 → 0 and it is zero. Similar remark applies to
ur1 when z1R1 + z2R2 = 0.

For later use, let Γ0 denote the possible boundary layer at x = 0 and let Γ1

denote the possible boundary layer at x = 1 for system (3.4).
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Corollary 3.3. Under electroneutrality boundary conditions, that is,

z1L1 = −z2L2 = L and z1R1 = −z2R2 = R, (3.9)

one has

φL0 = V, z1c
L
10 = −z2cL20 = L; φR0 = 0, z1c

R
10 = −z2cR20 = R;

φL1 = cL11 = cL21 = φR1 = cR11 = cR21 = 0.

In particular, up to O(ν), there is no boundary layer at x = 0 and x = 1.

3.1.2. Limiting slow dynamics and regular layer. Next we construct the regular
layer on Z that connects ω(NL) and α(NR). Note that, for ε = 0, system (3.1)
loses most information. To remedy this degeneracy, we follow the idea in [20, 53, 55]
and make a rescaling u = εp and −z2c2 = z1c1 + εq in system (3.1). In term of the
new variables, system (3.1) becomes

φ̇ =p, εṗ = q − εhτ (τ)

h(τ)
p, εq̇ = (z1f1 − z2f2) p+

z1g1 + z2g2
h(τ)

,

ċ1 =− f1p−
g1
h(τ)

, J̇1 = J̇2 = 0, τ̇ = 1
(3.10)

where, for i = 1, 2,

fi = fi

(
c1,−

z1c1 + εq

z2
; ν, λν

)
; g1 = g1 (c1, J1, J2; ν, λν) ;

and

g2 = g2

(
−z1c1 + εq

z2
, J1, J2; ν, λν

)
.

It is again a singular perturbation problem and its limiting slow system is

φ̇ =p, q = 0, p = −
z1g1

(
c1, J1, J2; ν, λν

)
+ z2g2

(
− z1

z2
c1, J1, J2; ν, λν

)
z1(z1 − z2)h(τ)c1

,

ċ1 =− f1
(
c1,−

z1
z2
c1; ν, λν

)
p− 1

h(τ)
g1
(
c1, J1, J2; ν, λν

)
,

J̇1 =J̇2 = 0, τ̇ = 1.

(3.11)

For system (3.11), the slow manifold is

S =

{
q = 0, p = −

z1g1
(
c1, J1, J2; ν, λν

)
+ z2g2

(
− z1

z2
c1, J1, J2; ν, λν

)
z1(z1 − z2)h(τ)c1

}
.

Therefore, the limiting slow system on S is

φ̇ =p, ċ1 = −f1
(
c1,−

z1
z2
c1; ν, λν

)
p− 1

h(τ)
g1
(
c1, J1, J2; ν, λν

)
,

J̇1 =J̇2 = 0, τ̇ = 1,

(3.12)

where

p = −
z1g1

(
c1, J1, J2; ν, λν

)
+ z2g2

(
− z1

z2
c1, J1, J2; ν, λν

)
z1(z1 − z2)h(τ)c1

.

Similar to the layer problem, we look for solutions of (3.12) of the form

φ(x) = φ0(x) + φ1(x)ν + o(ν), c1(x) = c10(x) + c11(x)ν + o(ν),

Ji = Ji0 + Ji1ν + o(ν).
(3.13)
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to connect ω(NL) and α(NR) given in Proposition 3.2; in particular, for j = 0, 1,

(φj(0), c1j(0)) =
(
φLj , c

L
1j

)
, (φj(1), c1j(1)) =

(
φRj , c

R
1j

)
.

From system (3.12) and the definitions of fj ’s and gj ’s in (2.10), we have

φ̇0 =− z1J10 + z2J20
z1(z1 − z2)h(τ)c10

, ċ10 =
z2 (J10 + J20)

(z1 − z2)h(τ)
,

J̇10 =J̇20 = 0, τ̇ = 1,

(3.14)

and

φ̇1 =
(z1J10 + z2J20)c11
z1(z1 − z2)h(τ)c210

− z1J11 + z2J21
z1(z1 − z2)h(τ)c10

,

ċ11 =
(z1λ− z2)(J10 + J20)c10

(z1 − z2)h(τ)
+
z2(J11 + J21)

(z1 − z2)h(τ)
,

J̇11 =J̇21 = 0, τ̇ = 1.

(3.15)

We denote

H(x) =

∫ x

0

h−1(s)ds. (3.16)

Lemma 3.4. There is a unique solution (φ0(x), c10(x), J10, J20, τ(x)) of (3.14) such
that

(φ0(0), c10(0), τ(0)) = (φL0 , c
L
10, 0) and (φ0(1), c10(1), τ(1)) = (φR0 , c

R
10, 1),

where φL0 , φR0 , cL10, and cR10 are given in Proposition 3.2. It is given by

φ0(x) =φL0 +
φR0 − φL0

ln cR10 − ln cL10
ln

(
1− H(x)

H(1)
+
H(x)

H(1)

cR10
cL10

)
,

c10(x) =

(
1− H(x)

H(1)

)
cL10 +

H(x)

H(1)
cR10,

J10 =
cL10 − cR10

H(1)(ln cL10 − ln cR10)

(
z1
(
φL0 − φR0

)
+ ln cL10 − ln cR10

)
,

J20 =
cL20 − cR20

H(1)(ln cL20 − ln cR20)

(
z2
(
φL0 − φR0

)
+ ln cL20 − ln cR20

)
,

τ(x) =x.

(3.17)

Proof. We refer the readers to [20, 53, 55] for a detailed proof.

We now examine system (3.15). For convenience, we define two functions

M = M(L1, L2, R1, R2;λ), N = N(L1, L2, R1, R2;λ)

as

M =cR11 − cL11 +
z1λ− z2

2z2
(cL10 + cR10)(cL10 − cR10),

N =
φL0 − φR0

ln cL10 − ln cR10

(
cR11
cR10
− cL11
cL10

+
z1λ− z2

z2
(cL10 − cR10)

)
− φL0 − φR0
cL10 − cR10

M.

(3.18)

Lemma 3.5. There is a unique solution (φ1(x), c11(x), J11, J21, τ(x)) of (3.15) such
that

(φ1(0), c11(0), τ(0)) = (φL1 , c
L
11, 0) and (φ1(1), c11(1), τ(1)) = (φR1 , c

R
11, 1),
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where φL1 , φR1 , cL11, and cR11 are given in Proposition 3.2. It is given by

φ1(x) =− ln cL10 − ln c10(x)

ln cL10 − ln cR10
N +

φL0 − φR0
ln cL10 − ln cR10

[
cL10 − c10(x)

c10(x)

(
cL11
cL10
− z1λ− z2

2z2
cL10

)
+

(z1λ− z2)(cL10 − cR10)

2z2

H(x)

H(1)
+

(
H(x)

H(1)c10(x)
− ln cL10 − ln c10(x)

cL10 − cR10

)
M

]
,

c11(x) =cL11 −
z1λ− z2

2z2

(
cL10 + c10(x)

) (
cL10 − c10(x)

)
+
H(x)

H(1)
M,

J11 =
z1(cL10 − cR10)

H(1)(ln cL10 − ln cR10)
N − M

H(1)
, J21 = − z1(cL10 − cR10)

H(1)(ln cL10 − ln cR10)
N +

z1M

z2H(1)
,

where M and N are defined in (3.18).

Proof. It follows from (3.15) that

c11(x) =cL11 +
(z1λ− z2)(J10 + J20)

z1 − z2

∫ x

0

c10(s)

h(s)
ds+

z2(J11 + J21)

z1 − z2

∫ x

0

1

h(s)
ds

=cL11 +
z1λ− z2

2z2

(
c210(x)−

(
cL10
)2)

+
z2(J11 + J21)

z1 − z2
H(x).

Thus, from Proposition 3.2,

z2(J11 + J21)

z1 − z2
H(1) =cR11 − cL11 +

z1λ− z2
2z2

(
cL10 + cR10

) (
cL10 − cR10

)
,

which gives, by definition of M in (3.18),

J11 + J21 =
z1 − z2
z2H(1)

M. (3.19)

Hence,

c11(x) = cL11 −
z1λ− z2

2z2

(
cL10 + c10(x)

) (
cL10 − c10(x)

)
+
H(x)

H(1)
M. (3.20)

Also, from (3.15), we have

φ1(x) =φL1 +
z1J10 + z2J20
z1(z1 − z2)

∫ x

0

c11(s)

h(s)c210(s)
ds− z1J11 + z2J21

z1(z1 − z2)

∫ x

0

1

h(s)c10(s)
ds.

Note that, from (3.14) and (3.17),∫ x

0

1

h(s)c210(s)
ds =

z1 − z2
z2(J10 + J20)

∫ x

0

ċ10(s)

c210(s)
ds =

H(1)(cL10 − c10(x))

(cL10 − cR10)cL10c10(x)
,∫ x

0

∫ s
0
h−1(σ)dσ

h(s)c210(s)
ds =− z1 − z2

z2(J10 + J20)

∫ x

0

∫ s

0

h−1(σ)dσ
d

ds
c−110 (s)ds

=
H(1)

cL10 − cR10

(
H(x)

c10(x)
−
∫ x

0

h−1(s)c−110 (s)ds

)
=

H(1)H(x)

(cL10 − cR10)c10(x)
− H(1)2(ln cL10 − ln c10(x))

(cL10 − cR10)2
.
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These, together with (3.20) and (3.17), yield∫ x

0

c11(s)

h(s)c210(s)
ds =

(
cL11 −

z1λ− z2
2z2

(
cL10
)2) (cL10 − c10(x)

)
H(1)

(cL10 − cR10)cL10c10(x)
+
z1λ− z2

2z2
H(x)

+
M

cL10 − cR10

(
H(x)

c10(x)
− ln cL10 − ln c10(x)

cL10 − cR10

)
.

A direct calculation then gives

φ1(x) =− ln cL10 − ln c10(x)

ln cL10 − ln cR10
N +

φL0 − φR0
ln cL10 − ln cR10

[
cL10 − c10(x)

c10(x)

(
cL11
cL10
− z1λ− z2

2z2
cL10

)
+

(z1λ− z2)(cL10 − cR10)

2z2

H(x)

H(1)
+

(
H(x)

H(1)c10(x)
− ln cL10 − ln c10(x)

cL10 − cR10

)
M

]
.

Hence,

(z1J11 + z2J21)(ln cL10 − ln cR10)

z1(z1 − z2)(cL10 − cR10)
H(1)−N = 0,

which gives

z1J11 + z2J21 =
z1(z1 − z2)(cL10 − cR10)

H(1)(ln cL10 − ln cR10)
N.

Formulas for J11, J21, and φ1 follow directly.

The slow orbit

Λ(x; ν) = (φ0(x) + νφ1(x), c10(x) + νc11(x), J1(ν), J2(ν), τ(x)) + o(ν) (3.21)

given in Lemmas 3.4 and 3.5 connects ω(NL) and α(NR). Let M̄L (resp., M̄R) be
the forward (resp., backward) image of ω(NL) (resp., α(NR)) under the slow flow
(3.12). One has the following result.

Proposition 3.6. There exists ν0 > 0 small depending on boundary conditions so
that, if 0 ≤ ν ≤ ν0, then, on the five-dimensional slow manifold S, M̄L and M̄R

intersects transversally along the unique orbit Λ(x; ν) given in (3.21).

Proof. We will establish the transversality of the intersection by showing that
ω(NL) ·1 (the image of ω(NL) under the time-one map of the flow of system (3.12))
is transversal to α(NR) on S

⋂
{τ = 1}. It consists of the following two steps.

Step 1: We will show that, for ν = 0, ω(NL) ·1 and α(NR) intersect transversally
on S

⋂
{τ = 1}.

Using (φ, c1, J1, J2) as a coordinate system on S
⋂
{τ = 1}, it then follows from

(3.17) that, for ν = 0, ω(NL) · 1 is given by

ω(NL) · 1 = {(φ(J1, J2), c1(J1, J2), J1, J2) : arbitrary J1, J2}
with

φ(J1, J2) =φL0 −
z1J1 + z2J2
z1z2(J1 + J2)

ln
c1(J1, J2)

cL10
, c1(J1, J2) = cL10 +

z2H(1)(J1 + J2)

z1 − z2
.

Therefore, the tangent space to ω(NL) · 1 restricted on S
⋂
{τ = 1} is spanned by

the vectors

(φJ1 , (c1)J1 , 1, 0) =

(
φJ1 ,

z2H(1)

z1 − z2
, 1, 0

)
and (φJ2 , (c1)J2 , 0, 1) =

(
φJ2 ,

z2H(1)

z1 − z2
, 0, 1

)
.
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In view of the display in Proposition 3.2, the set α(NR) is parameterized by J1 and
J2, and hence, the tangent space to α(NR) restricted on S

⋂
{τ = 1} is spanned

by (0,0,1,0) and (0,0,0,1). Note that S
⋂
{τ = 1} is four dimensional. Thus, it

suffices to show that the above four vectors are linearly independent or, equivalently,
φJ1 6= φJ2 at (J1, J2) = (J10, J20). The latter can be verified by a direct computation
as follows:

φJ1 − φJ2 = − z1 − z2
z1z2(J1 + J2)

ln

[
1 +

z2(J1 + J2)

(z1 − z2)cL10
H(1)

]
6= 0,

even as J1 + J2 → 0. This establishes the transversal intersection of ω(NL) · 1 and
α(NR) on S

⋂
{τ = 1}.

Step 2: We show that there exists ν0 > 0 small, so that, if 0 ≤ ν ≤ ν0, then
ω(NL) · 1 and α(NR) intersect transversally on S

⋂
{τ = 1}.

This can be argued directly from the smooth dependence of solutions on param-
eter ν. And we complete the proof.

3.2. Existence of solutions near the singular orbit. We have constructed a
unique singular orbit on [0,1] that connects BL to BR. It consists of two boundary
layer orbits Γ0 from the point

(V, ul0 + ul1ν + o(ν), L1, L2, J10 + J11ν + o(ν), J20 + J21ν + o(ν), 0) ∈ BL
to the point

(φL, 0, cL1 , c
L
2 , J1, J2, 0) ∈ ω(NL) ⊂ Z

and Γ1 from the point

(φR, 0, cR1 , c
R
2 , J1, J2, 1) ∈ α(NR) ⊂ Z

to the point

(0, ur0 + ur1 + o(ν), R1, R2, J10 + J11ν + o(ν), J20 + J21ν + o(ν), 1) ∈ BR,
and a regular layer Λ on Z that connects the two landing points

(φL, 0, cL1 , c
L
2 , J1, J2, 0) ∈ ω(NL) and (φR, 0, cR1 , c

R
2 , J1, J2, 1) ∈ α(NR)

of the two boundary layers.
We now establish the existence of a solution of (2.8)-(2.9) near the singular orbit

constructed above which is a union of two boundary layers and one regular layer
Γ0∪Λ∪Γ1. The proof follows the same line as that in [20, 51, 53, 55], and the main
tool used is the Exchange Lemma (see, for example, [12, 44, 45, 46, 52, 54, 78, 79, 85])
of the geometric singular perturbation theory.

Theorem 3.7. Let Γ0∪Λ∪Γ1 be the singular orbit of the connecting problem system
(3.1) associated to BL and BR in system (3.3). Then, for ε > 0 small and ν ≥ 0
small, the boundary value problem (2.8) and (2.9) has a unique smooth solution
near the singular orbit.

Proof. Let ν0 > 0 be as in Proposition 3.6. For 0 ≤ ν ≤ ν0, denote ul = ul0 + ul1ν,
J1(ν) = J10 + J11ν and J2(ν) = J20 + J21ν. Fix δ > 0 small to be determined. Let

BL(δ) = {(V, u, L1, L2, J1, J2, 0) ∈ R7 : |u− ul| < δ, |Ji − Ji(ν)| < δ}.
For ε > 0, let ML(ε, δ) be the forward trace of BL(δ) under the flow of system
(3.1) or equivalently of system (3.2) and let MR(ε) be the backward trace of BR.
To prove the existence and uniqueness statement, it suffices to show that ML(ε, δ)
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intersects MR(ε) transversally in a neighborhood of the singular orbit Γ0 ∪ Λ ∪ Γ1.
The latter will be established by an application of Exchange Lemmas.

Note that dimBL(δ)=3. It is clear that the vector field of the fast system (3.2)
is not tangent to BL(δ) for ε ≥ 0, and hence, dimML(ε, δ)=4. We next apply
Exchange Lemma to track ML(ε, δ) in the vicinity of Γ0 ∪ Λ ∪ Γ1. First of all,
the transversality of the intersection BL(δ)

⋂
W s(Z) along Γ0 in Proposition 3.2

implies the transversality of intersection ML(0, δ)
⋂
W s(Z). Secondly, we have also

established that dimω(NL) = dimNL − 1 = 2 in Proposition 3.2 and that the
limiting slow flow is not tangent to ω(NL) in Section 3.1.2. With these conditions,
Exchange Lemma ([12, 44, 45, 46, 78, 85]) states that there exist ρ > 0 and ε1 > 0
so that, if 0 < ε ≤ ε1, then ML(ε, δ) will first follow Γ0 toward ω(NL) ⊂ Z, then
follow the trace of ω(NL) in the vicinity of Λ toward {τ = 1}, leave the vicinity of Z,
and, upon exit, a portion of ML(ε, δ) is C1 O(ε)-close to Wu(ω(NL)× (1−ρ, 1+ρ))
in the vicinity of Γ1. Note that dimWu(ω(NL)× (1−ρ, 1+ρ)) = dimML(ε, δ) = 4.

It remains to show that Wu(ω(NL)×(1−ρ, 1+ρ)) intersects MR(ε) transversally
since ML(ε, δ) is C1 O(ε)-close to Wu(ω(NL)×(1−ρ, 1+ρ)). Recall that, for ε = 0,
MR intersects Wu(Z) transversally along NR (Proposition 3.2); in particular, at
γ1 := α(Γ1) ∈ α(NR) ⊂ Z, we have

Tγ1MR = Tγ1α(NR) + Tγ1W
u(γ1) + span{Vs}

where, Tγ1W
u(γ1) is the tangent space of the one-dimensional unstable fiber Wu(γ1)

at γ1 and the vector Vs 6∈ Tγ1Wu(Z) (the latter follows from the transversality of
the intersection of MR and Wu(Z)). Also,

Tγ1W
u(ω(NL)× (1− ρ, 1 + ρ)) = Tγ1(ω(NL) · 1) + span{Vτ}+ Tγ1W

u(γ1)

where the vector Vτ is the tangent vector to the τ -axis as the result of the interval
factor (1 − ρ, 1 + ρ). Recall from Proposition 3.6 that ω(NL) · 1 and α(NR) are
transversal on Z ∩ {τ = 1}. Therefore, at γ1, the tangent spaces Tγ1MR and
Tγ1W

u(ω(NL)× (1− ρ, 1 + ρ)) contain seven linearly independent vectors: Vs, Vτ ,
Tγ1W

u(γ1) and the other four from Tγ1(ω(NL) · 1) and Tγ1α(NR); that is, MR

and Wu(ω(NL) × (1 − ρ, 1 + ρ)) intersect transversally. We thus conclude that,
there exists 0 < ε0 ≤ ε1 so that, if 0 < ε ≤ ε0, then ML(ε, δ) intersects MR(ε)
transversally.

For uniqueness, note that the transversality of the intersection ML(ε, δ)
⋂
MR(ε)

implies dim(ML(ε, δ)
⋂
MR(ε)) = dimML(ε, δ) + dimMR(ε) − 7 = 1. Thus, there

exists δ0 > 0 such that, if 0 < δ ≤ δ0, the intersection ML(ε, δ)
⋂
MR(ε) consists of

precisely one solution near the singular orbit Γ0 ∪ Λ ∪ Γ1.

4. Ion size effects on individual fluxes and on the current. The analysis in
the previous sections not only establishes the existence of solutions for BVP (2.8)-
(2.9) but also provides sufficiently quantitative information on the solution that
allows us to extract useful approximations to the individual fluxes Ji’s and the total
flux of charge (current) I for small ν.

In this section, we will study ion size effects on the individual fluxes Ji’s as
well as the I-V relations. Contributions to I1 from Jk1 are carefully examined,
which provide detailed information on how different ion species interact within ion
channels.

We express the flux Ji as

Ji(V ;λ, ε, ν) =Ji0(V ; ε) + Ji1(V ;λ, ε)ν + o(ν), (4.1)
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and the I-V relations defined in (2.11) as

I(V ;λ, ε, ν) = I0(V ; ε) + I1(V ;λ, ε)ν + o(ν). (4.2)

The term I0(V ; ε) (resp. Ji0) is the I-V relations (resp. the individual flux) without
counting the ion size effect, and I1(V ;λ, ε) (resp. Ji1) is the main term providing
effects on the I-V relation (resp. the individual flux) from ion sizes.

We comment that, in (4.1) and (4.2), Ji, Ji0, Ji1, I, I0 and I1 all depend on
L1, L2, R1 and R2 too.

4.1. Ion size effects on individual fluxes Ji’s. We introduce two functions
F1 = F1(L1, L2;R1, R2;λ) and F2 = F2(L1, L2;R1, R2;λ) as

F1 =
1

H(1)(ln cL10 − ln cR10)

(
H(1)F2 +

z1(cL10 − cR10)(R1 − L1 + λ(R2 − L2))

ln cL10 − ln cR10

)
,

F2 =
cL10(L1 + λL2)− cR10(R1 + λR2)

H(1)
+
z1λ− z2
2z2H(1)

(cL10 − cR10)(cL10 + cR10),

where H(1) =
∫ 1

0
h−1(s)ds in (3.16). We have

Corollary 4.1. In (4.1),

J10(V ; 0) =
D1(cL10 − cR10)

H(1)
+
z1D1(cL10 − cR10)(ln(L1R2)− ln(L2R1))

(z1 − z2)H(1)(ln cL10 − ln cR10)

+
z1D1(cL10 − cR10)

H(1)(ln cL10 − ln cR10)

e

kBT
V,

J20(V ; 0) =− z1D2(cL10 − cR10)

z2H(1)
− z1D2(cL10 − cR10)(ln(L1R2)− ln(L2R1))

(z1 − z2)H(1)(ln cL10 − ln cR10)

− z1D2(cL10 − cR10)

H(1)(ln cL10 − ln cR10)

e

kBT
V,

J11(V ; 0) =D1

(
F1

e

kBT
V +

ln(L1R2)− ln(L2R1)

z1 − z2
F1 + F2

)
,

J21(V ; 0) =D2

(
−F1

e

kBT
V − ln(L1R2)− ln(L2R1)

z1 − z2
F1 −

z1
z2
F2

)
,

where cL10 and cR10 are given in Proposition 3.2.
Under electroneutrality boundary conditions (3.9), one has,

J10 =
D1(L−R)

(
z1

e
kBT

V + lnL− lnR
)

z1H(1)(lnL− lnR)
, J20 =

D2(L−R)
(
z2

e
kBT

V + lnL− lnR
)

z2H(1)(lnL− lnR)
,

J11 =
D1(z1λ− z2)

z1z2H(1)
γ0(L,R)γ1(L,R)

e

kBT
V − D1(z1λ− z2)(L2 −R2)

2z21z2H(1)
,

J21 =− D2(z1λ− z2)

z1z2H(1)
γ0(L,R)γ1(L,R)

e

kBT
V +

D2(z1λ− z2)(L2 −R2)

2z1z22H(1)
,

where

γ0(L,R) =
L−R

lnL− lnR
, γ1(L,R) =

L−R
lnL− lnR

− L+R

2
. (4.3)

Proof. From Jk = DkJk = DkJk0 +DkJk1ν + o(ν), one has

Jk0(V ; 0) =DkJk0(V ; 0) and Jk1(V ; 0) = DkJk1(V ; 0).
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The formulas then follow directly from Lemmas 3.4 and 3.5. The conclusion under
electroneutrality boundary conditions (3.9) then follows from Proposition 3.2 and
Corollary 4.1.

Remark 4.2. We stress that the linear dependence of Ji0’s and Ji1’s on V in
Corollary 4.1 is due to the fact that they are zeroth order approximations in ε
of the corresponding quantities with zero permanent charge. In general, they are
nonlinear when permanent charge is non-zero (see, e.g, [43]) and, even with zero
permanent charge, higher order terms are not linear in V (see, e.g., [1, 87]).

For the functions defined in (4.3), we have

Lemma 4.3. If L 6= R, then γ0(L,R) > 0 and γ1(L,R) < 0. As |L− R| → 0 with
R being fixed,

γ0(L,R)→ R and γ1(L,R)→ 0.

Proof. The proof is straightforward.

Based on the approximations for Ji’s in Corollary 4.1, we define four critical
potentials and discuss their roles in characterizing ion size effects on individual
fluxes.

Definition 4.4. We define four potentials V1c, V2c, V
1c and V 2c by

J11(V1c;λ, 0) = J21(V2c;λ, 0) =
d

dλ
J11(V 1c;λ, 0) =

d

dλ
J21(V 2c;λ, 0) = 0.

Corollary 4.5. Suppose cL10 6= cR10. One has

V1c =− kBT

e

(
ln(L1R2)− ln(L2R1)

z1 − z2
+
F2

F1

)
,

V2c =− kBT

e

(
ln(L1R2)− ln(L2R1)

z1 − z2
+
z1F2

z2F1

)
,

V 1c =− kBT

e

(
ln(L1R2)− ln(L2R1)

z1 − z2
+

(ln cL10 − ln cR10)G0
z1
(
G0 + (R2 − L2)(cL10 − cR10)

)) ,
V 2c =− kBT

e

(
ln(L1R2)− ln(L2R1)

z1 − z2
+

(ln cL10 − ln cR10)G0
z2
(
G0 + (R2 − L2)(cL10 − cR10)

)) ,
where

G0 = (ln cL10 − ln cR10)

(
L2c

L
10 −R2c

R
10 +

z1
2z2

(cL10 − cR10)(cL10 + cR10)

)
.

Under the electroneutrality boundary conditions (3.9) and L 6= R, one has,

V1c =V 1c =
kBT

e

L2 −R2

2z1γ0(L,R)γ1(L,R)
, V2c = V 2c =

kBT

e

L2 −R2

2z2γ0(L,R)γ1(L,R)
.

Proof. The statements follows from Corollary 4.1 and Definition 4.4.

Remark 4.6. It follows from Corollary 4.5 that Vkc 6= V kc and Vkc depends on λ
in general, but, under electroneutrality boundary conditions, Vkc = V kc and Vkc is
independent of λ.
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The significance of the four critical values V1c, V2c, V
1c and V 2c is apparent

from their definitions. The value V1c and V2c are the potentials that balance the
ion size effects on individual fluxes, and the values V 1c

s and V 2c
s are the potentials

that separate the relative size effects on individual fluxes. More precisely,

Theorem 4.7. Suppose ∂Jk1

∂V (V ;λ, 0) > 0
(
resp. ∂Jk1

∂V (V ;λ, 0) < 0
)
. For small

ε > 0 and ν > 0, one has

(i) if V > Vkc (resp. V < Vkc), then Jk1(V ; ε, ν) > Jk1(V ; ε, 0) (resp. Jk1(V ; ε, ν) <
Jk1(V ; ε, 0));

(ii) if V < Vkc (resp. V > Vkc), then Jk1(V ; ε, ν) < Jk1(V ; ε, 0) (resp. Jk1(V ; ε, ν) >
Jk1(V ; ε, 0)).

Theorem 4.8. Suppose ∂2(Jk1)
∂V ∂λ (V ;λ, 0) > 0

(
resp. ∂

2(Jk1)
∂V ∂λ (V ;λ, 0) < 0

)
. For

small ε > 0 and ν > 0, one has

(i) if V > V kc (resp. V < V kc), then Jk1 is increasing (resp. decreasing) λ;
(ii) if V < V kc (resp. V > V kc), then Jk1 is decreasing (resp. increasing) λ.

Concerning the conditions in Theorems 4.7 and 4.8, the following result can be
easily checked.

Lemma 4.9. Assume electroneutrality boundary conditions (3.9) with L 6= R. One
has, for k = 1, 2, ∂V Jk1 > 0 and ∂2V λJk1 > 0. As L → R, ∂V Jk1 → 0 and
∂2V λJk1 = O((L−R)2).

4.2. Ion size effects on the current I. We analyze ion size effects on the I-V
relations following the outline as that in [51].

Corollary 4.10. In formulas (4.2), one has

I0(V ; 0) =
z1(z1D1 − z2D2)(cL10 − cR10)(ln(L1R2)− ln(L2R1))

H(1)(ln cL10 − ln cR10)

+
z1(D1 −D2)(cL10 − cR10)

H(1)
+

(
z1(z1D1 − z2D2)(cL10 − cR10)

H(1)(ln cL10 − ln cR10)

)
e

kBT
V,

I1(V ; 0) =
z1(z1λ− z2)(D1 −D2)

z2H(1)

(
cR10R1 − cL10L1 +

1

2
(cL10 + cR10)(cL10 − cR10)

)
+
z1(z1λ− z2)(z1D1 − z2D2)(cL10 − cR10)

z2H(1)(ln cL10 − ln cR10)

(
cR10R1 − cL10L1

cL10 − cR10
+
cL10 + cR10

2

+
L1 −R1

ln cL10 − ln cR10

)
e

kBT
V,

where cL10 and cR10 are given in Proposition 3.2.
Under electroneutrality boundary conditions (3.9), one has

I0(V ; 0) =
(D1 −D2)(L−R)

H(1)
+
z1D1 − z2D2

H(1)
γ0(L,R)

e

kBT
V,

I1(V ;λ, 0) =− (z1λ− z2)(D1 −D2)(L2 −R2)

2z1z2H(1)

+
(z1λ− z2)(z1D1 − z2D2)

z1z2H(1)
γ0(L,R)γ1(L,R)

e

kBT
V.
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In particular, as L→ R, one has

I0(V ; 0)→ (z1D1 − z2D2)L

H(1)

e

kBT
V and I1(V ;λ, 0)→ 0.

Proof. It follows from

I(V ;λ, 0, ν) =z1J1 + z2J2 = z1D1J1 + z2D2J2

= (z1D1J10 + z2D2J20) + (z1D1J11 + z2D2J21) ν + o(ν)
(4.4)

that

I0(V ; 0) = z1J10 + z2J20, I1(V ;λ, 0) = z1J11 + z2J21.
The formulas for I0(V ; 0) and I1(V ; 0) follow directly from Lemmas 3.4 and 3.5.

Similar to Remark 4.2, the zeroth order (in ε) approximation of I-V relation in
Corollary 4.10 under the setup of this paper is linear in V . In general, the I-V
relation is not linear in V .

We next define three critical potentials V0, Vc and V c, which play an important
role in characterizing the effect on the I-V relation from ion sizes.

Definition 4.11. We define three potentials V0, Vc and V c by

I0(V0; 0) = 0, I1(Vc;λ, 0) = 0,
d

dλ
I1(V c;λ, 0) = 0.

From Definition 4.11, we obtain

Proposition 4.12. The potentials V0, Vc and V c have the following expressions

V0 =− kBT

e

(
D1 −D2

z1D1 − z2D2
(ln cL10 − ln cR10) + ln(L1R2)− ln(L2R1)

)
,

Vc =V c = −kBT
e

(D1 −D2)(ln cL10 − ln cR10)
(
cR10R1−cL10L1

cL10−cR10
+

cL10+c
R
10

2

)
(z1D1 − z2D2)

(
cR10R1−cL10L1

cL10−cR10
+

cL10+c
R
10

2 + L1−R1

ln cL10−ln cR10

) .
Under electroneutrality conditions (3.9) and L 6= R, one has

V0 =− kBT

e

D1 −D2

z1D1 − z2D2
(lnL− lnR),

Vc =
kBT

e

(D1 −D2)(L2 −R2)

2(z1D1 − z2D2)γ0(L,R)γ1(L,R)
.

For the LHS used in [51], Vc 6= V c in general. In the following, we will use the
notion Vc for Bikerman’s LHS taken in this paper.

As a direct consequence of Proposition 4.12, one has

Corollary 4.13. Assume electroneutrality boundary conditions (3.9). Then

(i) V0(L,R) = −V0(R,L) and Vc(L,R;λ) = −Vc(R,L;λ);
(ii) for L ≥ R, V0(L,R) is decreasing (resp. increasing) in L if D1 > D2 (resp.

D1 < D2), and, for fixed R > 0, lim
L→R

V0(L,R) = 0;

(iii) for fixed R > 0,

lim
L→R

Vc(lnL− lnR) = −12kBT

e

D1 −D2

z1D1 − z2D2
;

lim
L→∞

Vc
lnL− lnR

= −kBT
e

D1 −D2

z1D1 − z2D2
.
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A direct observation gives the following result:

Theorem 4.14. Treating I0, I1, V0, and Vc as functions of (L1, L2, R1, R2), one
has

(i) I0 is homogeneous of degree one, that is, for any s > 0,

I0(V, sL1, sL2, sR1, sR2; 0) = sI0(V,L1, L2, R1, R2; 0).

(ii) I1 is homogeneous of degree two, that is, for any s > 0,

I1(V, sL1, sL2, sR1, sR2; 0) = s2I1(V,L1, L2, R1, R2; 0).

(iii) The potentials V0 and Vc are homogeneous of degree zero.

The potential V0 is the so-called reversal potential. The value Vc is the potential
that balances ion size effect on I-V relations and the value V c is the potential that
separates the relative size effect on I-V relations. Precise statements are provided
as follows:

Theorem 4.15. Suppose ∂V I1(V ;λ, 0) > 0 (resp. ∂V I1(V ;λ, 0) < 0). For small
ε > 0 and ν > 0,

(i) If V > Vc (resp. V < Vc), then I(V ; ε, ν) > I(V ; ε, 0);
(ii) If V < Vc (resp. V > Vc), then I(V ; ε, ν) < I(V ; ε, 0).

Similarly,

Theorem 4.16. Suppose ∂2V λI1(V ;λ, 0) > 0 (resp. ∂2V λI1(V ;λ, 0) < 0). For small
ε > 0 and ν > 0,

(i) If V > V c (resp. V < V c), then the current I is increasing λ;
(ii) If V < V c (resp. V > V c), then the current I is decreasing λ.

The following result can be checked easily.

Proposition 4.17. Assume electroneutrality boundary conditions (3.9) with L 6= R.
Then, ∂V I1(V ;λ, 0) > 0. As L→ R, ∂V I1(V ;λ, 0)→ 0.

While ∂V I1(V ;λ, 0) is non-negative under electroneutrality conditions, in gen-
eral, it can be negative, as shown in the following example motivated by that in
[51]. We consider a special case with z1 = 1 and z2 = −1. Correspondingly, we have
cL10 =

√
L1L2 and cR10 =

√
R1R2.

Proposition 4.18. Fix L2 > 0. If either R2 ≥ R1 ≥ L1 > 0 and
√
L1L2 >

√
R1R2,

or R1 ≥ L1, R2 < R1 and
√
L1L2 > µ∗

√
R1R2, where µ∗ > 1 is a constant, then

∂V I1(V ;λ, 0) =− e

kBT

(λ+ 1)(D1 +D2)(
√
L1L2 −

√
R1R2)

H(1)(ln(L1L2)− ln(R1R2))
K(L1, L2, R1, R2)

is negative, where

K(L1, L2, R1, R2) =
L1 −R1

ln(L1L2)− ln(R1R2)
− L1

√
L1L2 −R1

√
R1R2√

L1L2 −
√
R1R2

+

√
L1L2 +

√
R1R2

2
.

(4.5)

Proof. Note that

e(D1 +D2)

kBTH(1)
> 0, λ > 0, and

√
L1L2 −

√
R1R2

ln(L1L2)− ln(R1R2)
> 0, for L1L2 6= R1R2,

it is suffices to show that K(L1, L2, R1, R2) > 0.
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For simplicity, we set √
L1L2 = µ

√
R1R2, (4.6)

where µ > 0, but µ 6= 1. Substituting (4.6) into equation (4.5), we have

K(L1, L2, R1, R2) =
h(µ)

2(µ− 1) lnµ
, (4.7)

where

h(µ) = (L1 −R1)(µ− 1) + 2(R1 − L1µ) lnµ−
√
R1R2(1− µ2) lnµ.

Notice that 2(µ− 1) lnµ > 0, for µ > 0, but µ 6= 1. Now we claim that h(µ) > 0.
To get started, a simple calculation gives

h′(µ) = R1

(
2

µ
− 1

)
− L1 (1 + 2 lnµ) +

√
R1R2

(
2µ lnµ+ µ− 1

µ

)
.

Case I: R2 ≥ R1 ≥ L1 > 0, and µ > 1.

Under the assumption of case 1, one has h′(µ) > h0(µ)R1, where

h0(µ) =
1

µ
− 2− 2 lnµ+ 2µ lnµ+ µ.

A careful calculation gives

h0(1) = h′0(1) = 0, and h′′0(µ) =
2

µ

(
1 +

1

µ
+

1

µ2

)
> 0, for µ > 1.

And hence, h′(µ) > 0 for µ > 1. Together with h(1) = 0, we have h(µ) > 0 for
µ > 1. Therefore, K(L1, L2, R1, R2) > 0.

Case II: R1 ≥ L1, R2 < R1, and µ > µ∗ > µ0 > 1.

For convenience, we define R2 = aR1, where 0 < a < 1. Then, we have

h′(µ) > g(µ)R1 with g(µ) =
2−
√
a

µ
+ aµ+ 2

√
aµ lnµ− 2 lnµ− 2.

Direct calculations give

g′(µ) =

√
a− 2

µ2
+ 2
√
a lnµ− 2

µ
+ 3
√
a and g′′(µ) =

2−
√
a

2µ3
+

2
√
a

µ
+

2

µ2
.

Clearly, one has g′′(µ) > 0, for all µ > 1. And hence, g′(µ) is increasing for µ > 1.
Note that g′(1) < 0, and g′(µ)→∞ as µ→∞. There exists a unique µ0 > 0 such
that g′(µ0) = 0. Furthermore, g(µ) is decreasing for 1 < µ < µ0 and increasing for
µ > µ0. Note that g(1) = 0, we have g(µ0) < 0, and there exists a unique µ∗ > µ0

such that g(µ∗) = 0, and g(µ) > 0 for µ > µ∗. This completes the proof.

4.3. Individual fluxes vs the current. The critical potential Vc is directly re-
lated to Vkc and V kc, k = 1, 2. For simplicity, from now on, we always assume the
electroneutrality boundary conditions (3.9).

Recall that, under electroneutrality boundary conditions, Vkc = V kc. We thus
use Vkc in the following. The next result follows from Corollary 4.5 and Proposition
4.12.

Lemma 4.19. Assume electroneutrality conditions (3.9). Then

Vc =
z1D1V1c − z2D2V2c

z1D1 − z2D2
.
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For fixed D1, D2, L, and R, one can immediately characterize ion size effects on
the individual fluxes Jk’s and the current I, depending on the relative locations of
Vc, V1c, V2c and where the boundary potential V is located. We will provide the
result only for the cases D1 > D2. The statements for other cases can be made
similarly.

Theorem 4.20. Assume electroneutrality conditions (3.9). Suppose λ 6= 1, and
D1 > D2 and L < R. Then,

Vc > V1c > V2c.

Hence, for small ε > 0 and ν > 0,

(i) if V > Vc, then ion sizes enhance J1, J2 and I, that is,

J1(V ; ε, ν) > J1(V ; ε, 0), J2(V ; ε, ν) > J2(V ; ε, 0), I(V ; ε, ν) > I(V ; ε, 0);

(ii) if V1c < V < Vc, then ion sizes enhance J1 and J2 but reduce I, that is,

J1(V ; ε, ν) > J1(V ; ε, 0), J2(V ; ε, ν) > J2(V ; ε, 0), I(V ; ε, ν) < I(V ; ε, 0);

(iii) if V2c < V < V1c, then ion sizes enhance J2 but reduce J1 and I, that is,

J1(V ; ε, ν) < J1(V ; ε, 0), J2(V ; ε, ν) > J2(V ; ε, 0), I(V ; ε, ν) < I(V ; ε, 0);

(iv) if V < V2c, then ion sizes reduce J1, J2 and I, that is,

J1(V ; ε, ν) < J1(V ; ε, 0), J2(V ; ε, ν) < J2(V ; ε, 0), I(V ; ε, ν) < I(V ; ε, 0).

Proof. The relation among Vc, V1c, and V2c follows from Corollary 4.5, Proposition
4.12, Lemma 4.19, and the assumption that D1 > D2 and L < R.

The statements (i)–(iv) then follow from Theorems 4.7 and 4.15.

Remark 4.21. For cases (i) and (ii) in Theorem 4.20, ion size effects on individual
fluxes J1 and J2 are the same, but their effects on the current I are opposite. For
cases (iii) and (iv), ion size effects on the flux J2 are opposite, but their effects on
the flux J1 and the current I are the same.

Similarly, one has

Theorem 4.22. Assume electroneutrality conditions (3.9). Suppose λ 6= 1, and
D1 > D2 and L > R. Then,

Vc < V1c < V2c.

Hence, for small ε > 0 and ν > 0,

(i) if V < Vc, then ion sizes reduce J1, J2 and I, that is,

J1(V ; ε, d) < J1(V ; ε, 0), J2(V ; ε, d) < J1(V ; ε, 0), I(V ; ε, d) < I(V ; ε, 0).

(ii) if Vc < V < V1c, then ion sizes reduce J1 and J2 but enhance I, that is,

J1(V ; ε, d) < J1(V ; ε, 0), J2(V ; ε, d) < J1(V ; ε, 0), I(V ; ε, d) > I(V ; ε, 0).

(iii) if V1c < V < V2c, then ion sizes reduce J2 but enhance J1 and I, that is,

J1(V ; ε, d) > J1(V ; ε, 0), J2(V ; ε, d) < J1(V ; ε, 0), I(V ; ε, d) > I(V ; ε, 0).

(iv) if V > V2c, then ion sizes enhance J1, J2 and I, that is,

J1(V ; ε, d) > J1(V ; ε, 0), J2(V ; ε, d) > J2(V ; ε, 0), I(V ; ε, d) > I(V ; ε, 0).

The effects of relative ion size λ on ionic flows can also be derived directly. Recall
that under electroneutrality conditions (3.9), we have Vic = V ic for i = 1, 2.
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Theorem 4.23. Assume electroneutrality conditions (3.9). Suppose D1 > D2 and
L < R. Then,

Vc > V1c > V2c.

Hence, for small ε > 0 and ν > 0, one has

(i) if V > Vc, then J1, J2 and I increase in λ;
(ii) if V1c < V < Vc, then J1 and J2 increase in λ but I decreases in λ;

(iii) if V2c < V < V1c, then J1 and I decrease in λ but J2 increases in λ;
(iv) if V < V2c, then J1, J2 and I decrease in λ.

Similarly,

Theorem 4.24. Assume electroneutrality conditions (3.9). Suppose D1 > D2 and
L > R. Then,

Vc < V1c < V2c.

Hence, for small ε > 0 and ν > 0, one has

(i) if V < Vc, then J1, J2 and I decrease in λ;
(ii) if Vc < V < V1c, then z1J1 and J2 decrease in λ but I increases in λ;

(iii) if V1c < V < V2c, then J1 and I increase in λ but J2 decreases in λ;
(iv) if V > V2c, then J1, J2 and I increase in λ.

4.4. Sensitivity of ion size effects near L = R. We examine closely the situation
for L and R close to each other. It turns out, in this situation, the properties of the
critical potentials are extremely sensitive on whether L > R or L < R.

Proposition 4.25. One has,

lim
L→R+

V1c = lim
L→R−

V2c = −∞, lim
L→R−

V1c = lim
L→R+

V2c = +∞.

Proof. From Lemma 4.3, one has

lim
L→R+

L2 −R2

γ0(L,R)γ1(L,R)
= −∞ and lim

L→R−

L2 −R2

γ0(L,R)γ1(L,R)
=∞.

Recall that z1 > 0 > z2. Our results then follow directly from Corollary 4.5.

The significance of the above result is discussed in the next remark.

Remark 4.26. Combining this result with Theorems 4.20 and Theorems 4.22, one
concludes that the effects of ion sizes are sensitive to whether L > R or L < R for
L and R close. More precisely, on one hand, as L → R−, one has V2c < V < V1c
for any fixed potential V , and hence, ion sizes always reduce J1 (comparing to J1
from point-charge case) but enhance J2 (see, (iii) in Theorem 4.20); on the other
hand, as L → R+, exactly the opposite occurs, that is, one has V2c > V > V1c for
any fixed potential V , and hence, ion sizes always enhance J1 but reduce J2 (see,
(iii) in Theorem 4.22).

Similar sensitivity dependence of ion sizes effects on total fluxes near L = R is
examined below. The result depends naturally on D1 and D2 as well as z1 and z2.

Proposition 4.27. Assume D1 > D2. One has,

lim
L→R+

Vc = −∞ and lim
L→R−

Vc = +∞.
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Proof. It follows from

lim
L→R+

L−R
γ1(L,R)

= −∞ and lim
L→R−

L−R
γ1(L,R)

=∞.

Remark 4.28. (a) Similar to Remark 4.26, when combining Proposition 4.27 with
Theorems 4.15 and 4.16, and Proposition 4.17, one concludes sensitive dependence
of ion size effects on the current I near L = R. The precise dependence further
involves the quantities D1 and D2; for example, if D1 > D2, on one hand, as
L → R+, one has V > Vc for any fixed potential V , and hence, ion size always
enhances the current I comparing to the current from point-charge case (see, (i)
in Theorem 4.15) and the current I is always increasing in λ (see, (ii) in Theorem
4.16); on the other hand, as L → R−, exactly the opposite effect occurs. For the
other cases, the ion size effects as L→ R− are always opposite to those as L→ R+.

(b) Comparing consequences from results in Proposition 4.25 and in Proposition
4.27, we note that the qualitatively sensitive dependences of ion sizes on individual
fluxes J1 = D1J1 and J2 = D2J2 do not depend on D1 and D2 but those on the
current I do, simply because I = z1D1J1 + z2D2J2 with z1 > 0 > z2.

5. Concluding remarks. We study a quasi-one-dimensional steady-state Poisson-
Nernst-Planck model for ionic flows through a single membrane channel with two
ion species, one positively charged and one negatively charged. Bikerman’s local
hard-sphere model is included to account for ion size effects. Under the framework
of geometric singular perturbation theory, together with the specific structures of
the PNP system, approximations to the individual fluxes and the I-V relations are
extracted, from which the qualitative properties of ionic flows are studied. A de-
tailed characterization of complicated interactions among multiple and physically
crucial parameters (such as boundary concentrations and potentials, diffusion coeffi-
cients and ion sizes) for ionic flows is provided. Based on relatively simple biological
settings, our results have demonstrated extremely rich behaviors of ionic flows and
sensitive dependence of flow properties on all these parameters. We believe that this
work will be useful for numerical studies and stimulate further analytical studies of
ionic flows through membrane channels.

We finally point out that the approximated I-V relation (zeroth order in ε) is
linear in V (See Corollary 4.10) under our set-up. However, the zeroth order (in
ε) approximation of the I-V relation is nonlinear in V when permanent charge is
nonzero (see, [43]) and, even with zero permanent charge, higher order terms are
nonlinear in V (see [1, 87] for examples).
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