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Abstract

We consider the problem of determing the existence of exponential dichotomy for a class of
linear nonautonomous ODEs. An approach is introduced that combines numerical techniques
with rigorous perturbation theory. It is applicable to a given problem within the class we
consider and for practical purposes we develop a continuation technique. Numerical results
illustrate the utility of the approach.
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1 Introduction

Exponential dichotomy (ED) is a characterization of hyperbolicity for solutions of linear non-
autonomous systems. An important class of linear non-autonomous systems are related to lin-
earization of non-linear problems along one distinguished solution or an invariant set. For exam-
ple, to detect the linear stability of traveling waves, one studies the spectrum property of linear
non-autonomous systems associated to the linearization along the solution. The notion of normal
hyperbolicity of invariant manifolds of nonlinear flows is also closely related to exponential di-
chotomy (a more accurate notion is exponential separation). Theories have been developed to the
study of exponential dichotomy from works of Lyapunov [14], Millionshchikov [15, 16], Bylov and
Izobov [3], Coppel [7], Palmer [17, 18, 19, 20], Sacker and Sell [21], and many others. In terms of
exponential dichotomy or some generalizations, various spectral theories have been established.
Main results of the theory include: (1) Invariant splitting according to asymptotic rates defined
by spectrum; (2) Roughness or perturbation results; (3) generic property of ED. All have said,
it is a highly non-trivial task to determine whether or not a given system has an ED. The only
available non-perturbation result is the Lyapunov sufficient condition and its variations.

A purpose of this work is to introduce an approach of combining analytical and numerical
tools for the study of exponential dichotomy. This approach depends heavily on the analysis of
QR methods developed in [9] and [10]. These works were initially developed for approximation of
Lyapunov exponents, but they first established a backward error analysis and then a forward error
analysis for the approximation of fundamental matrix solutions using QR methods. The basic
idea of this work can be explained as follows. The numerical approximation provides in fact true
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solutions for a nearby system. With the help of error analysis, one can rigorously estimate the
departure of the computed system from the original one. In the case that the computed system
has ED with enough hyperbolicity (relative to the error), one can continue the ED to the original
system for a fixed problem parameter (see Theorems 3.3 and 4.3). In addition, if for a given
problem parameter value the system has strong enough ED with respect to the hyberbolicity and
error, then the ED may be continued to a nearby problem (see Theorem 5.1). For a fixed problem
parameter we refine our error estimates starting from crude a priori estimates for that parameter
value or from refined estimates already obtained for a nearby problem. Likewise, the approach
can also provide quantitative information on how “close” the original system is to one without
ED (see Example 6.1).

The results obtained here are similar in flavor to the Roughness Theorem for Exponential
Dichotomy (see Coppel [7]), but with important differences. The basic idea is to compare a
discrete time system (corresponding to an approximate solution of (2.8)) with ED to a nearby
continuous time system to determine ED for the continous time system. However, the results
are not just of perturbation flavor, but iterative as well in that error estimates on the solution of
nonlinear scalar differential equation (2.8) are refined. We emphasize that obtaining these error
estimates does not rely on having ED. We are able to resolve rigorously small neighborhoods of
parameter space where there exists a problem with no ED. All quantities needed to determine
these neighborhoods are computable for the specific class of problems we focus on.

To be definite in this paper we consider the following differential equation on the real line:

y′′ − q(t)y = 0 , t ∈ IR , (1.1)

where the function q is asymptotically constant; that is,

lim
t→±∞

q(t) = q± > 0 .

It is a general and important problem because the model (1.1) is the form in which many second
order differential system can be recast (see e.g. [5, 13]). Upon rewriting this 2nd order problem
as the linear system

ẋ = A(t)x, where A(t) =
(

0 1
q(t) 0

)
, (1.2)

we will investigate if (1.2) admits ED.
Recall that (1.2) has ED, if for a fundamental solution X(t), there exist a projection P and

constants K ≥ 1 and α > 0 for which

‖X(t)PX−1(s)‖ ≤ Ke−α(t−s) , t ≥ s ,

‖X(t)(I − P )X−1(s)‖ ≤ Keα(t−s) , t ≤ s .
(1.3)

The Sacker-Sell spectrum, ΣED, is defined to be those values of λ ∈ IR for which the shifted
system ẋ = (A(t)− λI)x does not have ED. As a consequence, 0 /∈ ΣED if and only if (1.2) does
have ED.

For the case under examination here, let A± = limt→±∞ A(t). Then the eigenvalues of
A− are ±√q− and the eigenvalues of A+ are ±√q+. If we let a+ = min{√q+,

√
q−}, b+ =

max{√q+,
√

q−}, a− = min{−√q+,−√q−}, and b− = max{−√q+,−√q−}, then the possibilities
for ΣED of (1.2) are

1. ΣED = [a−, b−] ∪ [a+, b+], in which case the system (1.2) has ED, and
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2. ΣED = [a−, b+], in which case (1.2) does not have ED.

In spite of the apparent simplicity of the problem, determining whether or not there is ED for
(1.2) is a classical, general, and important problem, as well as a formidable task. Ascertaining
ED for (1.2) is also a classical problem, strongly related to the oscillatory nature of solutions of
(1.1): The celebrated Lyapunov theorem (see [13]) can in fact be rephrased as an exclusion of
ED for (1.2). Such results are limited in scope as they are applicable to functions q that are
in small in some sense and do not allow for resolving a neighborhood in parameter space where
there exists a problem with no ED. Similarly, many direct results on having ED for (1.2) are of
perturbation nature; see Coppel [7]. So, in practice, these results become applicable only in very
special situations, such as when q is a small perturbation of a constant value or more generally
for problems for which ED for the unperturbed problem is known.

Our approach is very different from either of the above mentioned points of view: We are
going to provide sufficient conditions based on numerical QR approximation for having (and
not excluding) ED for (1.2) directly, and we do not rely on a perturbation argument. Rather,
our approach is based upon determining whether an approximate problem has ED and then
giving explicit conditions that imply the original problem has ED. Our method may be viewed
as a combined numerical and analytical technique for detecting or excluding ED. The main
relevance of our method is that it is applicable to very general functions q, which can also be
very oscillatory in nature. The caveat is that our ability to infer that there is ED is limited by
the practical limitations one has to compute with arbitrary precision. However, in the ever so
important continuation context for problems with parameters, we will be able to detect explicit
(and in principle arbitrarily small) range of parameters inside which there is a parameter value
for which there is no ED; see Example 6.1.

Without loss of generality, we will consider the case in which limt→±∞ q(t) = 1, since this will
simplify notation considerably. Different limiting values of q can be handled through a rescaling
of time. To make the presentation clear we first consider the case where q(t) is continous and
q(t) ≡ 1 for |t| ≥ T , and then extend the study to the case where q(t) is continous and q(t) → 1
as t → ±∞.

This paper is organized as follows. In section 2 we outline the basic idea we exploit, a change
of variables that transforms (1.2) to upper triangular form. For simplicity we consider the forward
Euler method to approximate the orthogonal change of variables and recall the a priori global
error analysis. Section 3 contains our main results that show how to obtain improved bounds on
the error in approximating the orthogonal change of variables. In section 4 motivated by integral
separation we show how information obtained during the numerical computations may be used
to quantify the degree to which there is integral separation. We iteratively improve the bounds
on the integral separation and the error in the approximate orthgonal change of variables and
define a process which, under very reasonable conditions, we show converges. Section 5 contains
a perturbation result which allows for efficiently obtaining bounds on the error in the orthgonal
change of variables as a problem parameter changes without the need for a priori global error
bound. Thus, if refined bounds have been obtained, ED may be continued to a nearby problem.
In section 6 we illustrate the efficacy of our results with an example, while in section 7 we extend
our results from the case with constant tails to the case with asymptotically constant tails.
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2 An Equivalent Formulation of the Problem

2.1 QR Decomposition of the Fundamental Matrix Solution

We make use of an orthogonal change of variables of the form

Q(t) =
(

cos(θ(t)) sin(θ(t))
− sin(θ(t)) cos(θ(t))

)
(2.1)

to convert (1.2) into a system with an upper triangular coefficient matrix function. In order to
do so, the change of variables Q satisfies the differential equation

Q̇ = QS(Q,A), S(Q,A)ij =


(QT AQ)ij , i > j,

0, i = j,
−(QT AQ)ji, i < j,

(2.2)

and results in a transformed upper triangular coefficient matrix function of the form

B(t) := QT (t)A(t)Q(t)− S(Q,A) , (2.3)

with upper triangular fundamental matrix solution satisfying

Ṙ = B(t)R. (2.4)

The existence of ED for (1.2) is reduced to the existence of ED for (2.4). Numerically, we will
approximate Q and compare the strength of the ED for (2.4) with the error in approximating Q.

It is useful to briefly consider here the first problem: q(t) ≡ 1 for |t| ≥ T , for some T > 0. Let
A1 denote the matrix A(t) in (1.2) with q(t) ≡ 1, and consider

Q+ =
1√
2

(
1 −1
1 1

)
, Q− =

1√
2

(
1 1
−1 1

)
. (2.5)

Observe that for Q = ±Q+,
QT A1Q = diag(1,−1) , (2.6)

and for Q = ±Q−,
QT A1Q = diag(−1, 1) . (2.7)

Define Q(t) = Q+ for t ≤ −T and θ(−T ) = −π/4. Observe that for two cases of q(t) defined
for t ∈ (−T, T ) the equation (2.8) is extremely simple: For q(t) = 1, θ̇(t) = − cos(2θ(t)) and for
q(t) = −1, θ̇(t) = 1. Now, if q(t) ≡ 1, θ = −π/4+kπ, k ∈ ZZ, are stable equilibria that correspond
to Q+ and θ = π/4 + kπ, k ∈ ZZ, are unstable equilibria that correspond to Q−. In the case we
are considering, q± = 1, the possibilities for ΣED are either {−1, 1} or [−1, 1]. If q(t) = −1 for
−T < t < T and q(t) = 1 for |t| ≥ T , then ΣED is [−1, 1] if and only if θ(T ) = π/4 + kπ for some
k ∈ ZZ. Since θ(−T ) = −π/4 and θ(T ) = θ(−T )+2T , if q(t) = −1 for −T < t < T , the spectrum
is [−1, 1] if and only if 2T = π/2 + kπ for some k ∈ ZZ.

2.2 Numerical Integration of Q and A Priori Error Estimate

Using the form of Q in (2.1) we have

θ̇(t) = sin2(θ(t))− q(t) cos2(θ(t)) ≡ f(θ(t), q(t)) (2.8)
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We consider for simplicity the Forward Euler method applied to (2.8) and employ the classical
global error result to obtain an initial bound ρ(0) on the global error in θ(t) from t = −T to t = T .
Integration of the equation (2.8) for θ using the forward Euler method gives

θj+1 = θj + hj [sin2(θj)− q(tj) cos2(θj)], θ0 = −π/4, hj = tj+1 − tj (2.9)

for j = 0, ..., N − 1 with t0 = −T and tN = T . Then

θN = −π/4 +
N−1∑
j=0

hj [sin2(θj)− q(tj) cos2(θj)] (2.10)

The local error in integration of θ has the form

|ej | := |θj+1 − θ(tj+1; θj)| ≤
h2

j

2
sup

tj≤t≤tj=1

| d
dt

f(θ(t), q(t))| (2.11)

where θ(tj+1; θj) is the solution at t = tj+1 of (2.8) with the initial condition θ(tj ; θj) = θj . Note
that

d

dt
f(θ(t), q(t)) = 2(1+q(t)) cos(θ(t)) sin(θ(t))[sin2(θ(t))−q(t) cos2(θ(t))]−q′(t) cos2(θ(t)) (2.12)

which can be bounded as

| d
dt

f(θ(t), q(t))| ≤ |1 + q(t)| ·max{1, |q(t)|}+ |q′(t)| =: Ω(t). (2.13)

We next summarize the global error result for Forward Euler specialized to the equation
considered here. We have

θ(tj+1)− θj+1 = θ(tj)− θj + hj [f(tj , θ(tj))− f(tj , θj)] +
h2

j

2
θ̈(ξj), ξj ∈ (tj , tj+1). (2.14)

Then for Ωj = supt∈(tj ,tj+1) Ω(t) for Ω(t) given in (2.13) and

Lj = sup
t∈(tj ,tj+1)

L(t), L(t) := |1 + q(t)| ≥ | ∂

∂θ
f(t, θ)| (2.15)

we have

|ej+1| ≤ |ej |+ hjLj |θ(tj)− θj |+
h2

j

2
θ̈(ξj) ≤ (1 + hjLj)|ej |+

h2
j

2
Ωj . (2.16)

Then in a standard way, one obtains

Proposition 2.1. The global error in approximating θ may be bounded by

ρ(0) ≤ |eN | ≤ MN+MN−1(1+hNLN )+MN−2(1+hNLN )(1+hN−1LN−1)+· · ·+M0(1+hNLN ) · · · (1+h1L1)
(2.17)

where Mj =
h2

j

2 Ωj.

We will employ this global error bound ρ(0) to obtain refined error bounds as outlined in
sections 3, 4, 5. A reasonably good error bound ρ(0) is necessary to obtain refined error bounds. In
theory, one can obtain good ρ(0) by employing small enough time steps, but this is often inpractical
becauses it increases the computational complexity. As an integral part of our approach we employ
a continuation strategy: we begin from a “simple” problem for which ρ(0) in Proposition 2.1 can
be determined accurately and efficiently and then continue to the problem we wish to solve. The
procedure can be carried out even if a member of the family of problems along the continuation
path does not have ED. We remark that the error bounds ultimately obtained are generally
smaller than the a priori bounds for a given set of time steps {hj}N

j=1 and much smaller as the
Lipschitz constant for (2.8) becomes larger.
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3 Exponential Dichotomy for Constant Tails

In this section we consider the existence of exponential dichotomy for the problem with constant
tails (q(t) = 1 for |t| ≥ T ). The main result of this section relies on the backward error analysis
of [9], arguments similar to those in [10], and the uniqueness of the QR factorization.

In exact arithmetic the solution of (2.2) may be alternatively obtained using the so-called dis-
crete QR technique whereby the solution Q is found at discrete points by forming X(tj+1, tj)Q(tj),
the product of the transition fundamental matrix solution and the solution Q at the previous time,
and then forming the QR factorization,

Q(tj+1)R(tj+1, tj) = X(tj+1, tj)Q(tj), j = 0, 1, ....

The exact fundamental matrix solution at t = tN is then obtained in QR form as

X(tN ) = Q(tN )R(tN , tN−1) . . . R(t2, t1)R(t1, t0)R(t0). (3.1)

Typically one is not able to form the transition fundamental matrix solutions exactly and
X(tj+1, tj) is approximated by Xj+1,j and what is found numerically is

Qj+1Rj+1 = Xj+1,jQj , j = 0, 1, ....

In approximating Q(t) we form Qj ≈ Q(tj) and an approximation to the fundamental matrix
solution XN at tN where

XN = QNRNRN−1 . . . R2R1R(t0) . (3.2)

This can be written in terms of the exact Q and R factors and the local error matrices, see [9]
Theorem 3.1, as

XN = Q(tN )[R(tN , tN−1) + EN ] . . . [R(t2, t1) + E2][R(t1, t0) + E1]R(t0) , (3.3)

where Ej = QT (tj)NjQ(tj−1) for Nj = Xj,j−1 −X(tj , tj−1), the local error in approximating the
transition fundamental matrix solution. The backward error result obtained in [9] is summarized
next. For precise statements we refer to the original work. See, in particular, Theorem 3.12 of
[9] for the result for the discrete QR method and Theorem 3.16 of [9] for the continuous QR
method in which the local error in approximation of (2.2) is used to bound the local error in the
transition fundamental matrix solution.

Summary 3.1. With a numerical realization of the QR methods, we are not obtaining the tri-
angular system (2.4-2.3), but rather the perturbed triangular system

Ṙ =
(
B(t) + E(t)

)
R , (3.4)

where B is given in (2.3), and E is bounded as

‖E‖ ≤ cη + O(η2) ≤ ω , (3.5)

where η := supj ||Ej || with the main contribution to the magnification factor c being the departure
from normality of the exact triangular factor R.

We will obtain in Lemma 3.4 explicit, computable bounds on supt ||E(t)|| for the problem,
(1.2), considered here.
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Now, consider the 2× 2 upper triangular coefficient matrix functions

B and B + E, B =
(

B11 B12

0 B22

)
, sup

t
||E(t)|| ≤ ω. (3.6)

We next prove the existence of an orthogonal change of variables

Q̂(t) =
(

cos(ϕ(t)) sin(ϕ(t))
− sin(ϕ(t)) cos(ϕ(t))

)
(3.7)

that brings the perturbed upper triangular system (3.4) to upper triangular and derive a bound
on supt ||Q̂(t)− I||. Note that from (2.2) and (3.7),

d

dt
sin(ϕ(t)) = − cos(ϕ(t))(S(Q̂, B + E))21, (3.8)

where (S(Q̂, B + E))21 = cos(ϕ(t)) sin(ϕ(t))(B11 −B22)− sin2(ϕ(t))B12 + (Q̂T EQ̂)21.

Lemma 3.2. There exists an orthogonal change of variables Q̂ that brings (3.4) to Ṙ = B̃R, B̃
upper triangular. Moreover, assume for some K > 0,

sup
t≥−T

∫ t

−T
e−

R t
τ (B11(r)−B22(r))drdτ ≤ K, (3.9)

β = αK for some α > 1, and κ = supt |1 + q(t)|. Set a1 = κβ2 and a2 = κβ3, and

ω+(α, K, κ) := (
√

a2
1 + 4(α− 1)a2 − a1)/(2a2). (3.10)

If ω := supt ||E(t)|| < ω+(α, K, κ), then

| sin(ϕ(t))| ≤ ρ := β · ω ≡ αKω for all t ∈ [−T,+T ]. (3.11)

Proof. From (3.8) we have for s(t) ≡ sin(ϕ(t)) and c(t) ≡ cos(ϕ(t)),

d

dt
s = −c[cs(B11 −B22)− s2B12 + (Q̂T EQ̂)21]

= −s(B11 −B22) + (s− c2s)(B11 −B22) + c[s2B12 − (Q̂T EQ̂)21]
=: −s(B11 −B22) + p(t, s, ω).

(3.12)

The proof follows from Theorem IV.2.1 in [12]. Using the nonlinear variation of constants formula
we have for s(0) = 0,

sin(ϕ(t)) =
∫ t

−T
e−

R t
τ (B11(r)−B22(r))drp(τ, s(τ), ω)dτ (3.13)

Thus, supt | sin(ϕ(t))| ≤ K supt |p(t, sin(ϕ(t)), ω)|. We have

|p(t, s, ω)| ≤ |p(t, s, ω)− p(t, 0, ω)|+ |p(t, 0, ω)| ≤ η(ρ, ω)|s|+ ω (3.14)

where
η(ρ, ω) ≤ κρ2 + κρ, (3.15)

using |c− 1| ≤ s2 for 0 ≤ c ≤ 1 and supt |B11(t)−B22(t)| ≤ κ, supt |B12(t)| ≤ κ. Theorem IV.2.1
of [12] may be applied if K[η(ρ, ω)ρ + ω] < ρ. Using the bound on η(ρ, ω) in (3.15) and the form
for ρ = βω, this condition is equivalent to a2ω

2 + a1ω + (1 − α) < 0 or ω < ω+(α, K, κ) with
ω+(α, K, κ) given in (3.10).
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Remark 3.1. The value α is adjustable, but a reasonable choice is α = 2. Note that this shows
that | sin(ϕ(t))| ≤ ρ which implies that | cos(ϕ(t)) − 1| ≤ ρ2/(2 − ρ2) provided ρ is such that
0 ≤ cos(ϕ(t)) ≤ 1. Recall that |ϕ(t)| ≤ ρ implies | sin(ϕ(t))| ≤ ρ which implies ||Q̂(t)− I|| ≤

√
2ρ

where || · || is the two norm or the Frobenius norm.

Remark 3.2. An alternative approach to obtaining ρ(0) is to employ Lemma 3.2. However, an
a priori bound on K is required, e.g. K = 2Teγ+1 where γ =

∫ T
−T |1 + q(t)|dt, and this tends

to unduly restrict the stepsizes hj/increase the number of steps N which adds greatly to the
computational complexity.

The following is our main result and establishes a uniform error in the approximation of the
orthogonal change of variables Q.

Theorem 3.3. Assume that {Qk}N
k=0 with Qk an approximation to Q(tk), −T = t0 < t1 < · · · <

tN = T , and Q0 = Q(−T ) = Q+ gives a backward error result with ‖E‖ ≤ ω. Suppose ω < ω+

as defined in Lemma 3.2. For ρ as defined in (3.11) in Lemma 3.2, we have

‖Q(tk)−Qk‖ ≤
√

2ρ (3.16)

for all k.

Proof. The idea of the proof is to use the uniqueness of the QR factorization to equate terms in
(3.2) and (3.3). By Lemma 3.2 there exists ρ > 0 such that in (3.2),

Q̂R̂ = [R(tk, tk−1) + Ek] . . . [R(t2, t1) + E2][R(t1, t0) + E1] (3.17)

with ‖Q̂ − I‖ ≤
√

2ρ, Q̂ orthogonal, and R̂ is upper triangular with positive diagonal elements.
Thus, from (3.3) we have

Q(tk)Q̂R̂ = QkRkRk−1 . . . R2R1R(t0). (3.18)

So, by the uniqueness of the QR factorization, Q(tk)Q̂ = Qk and

‖Q(tk)−Qk‖ = ‖Q̂− I‖ ≤
√

2ρ. (3.19)

In summary we compute QN which approximates Q(T ) with Q(−T ) = Q0 = Q+. If ‖QN −
Q−‖ >

√
2ρ, then original system has ED. The difference ‖QN − Q−‖ measures the strength of

the hyperbolicity while
√

2ρ bounds the error in approximating Q(T ) (see Theorem 3.3).
For the example we are considering we have

B(t) = (1 + q(t))
(
− cos(θ(t)) sin(θ(t)) cos2(θ(t))− sin2(θ(t))

0 cos(θ(t)) sin(θ(t))

)
, Ṙ(t) = B(t)R(t) (3.20)

where θ(t) satisfies (2.8). Observe that B11(t) = −B22(t) and 4B2
11(t) + B2

12(t) = (1 + q(t))2. We
have supt |B11(t)−B22(t)| ≤ supt |1 + q(t)| and supt |B12(t)| ≤ supt |1 + q(t)|.

The local error matrix Ej for Q over the interval [tj , tj+1] has the form

Ej := QT (tj+1; tj , Qj)Qj+1 − I =
(

cos(ej)− 1 sin(ej)
− sin(ej) cos(ej)− 1

)
, TOL := max

j
‖Ej‖ (3.21)
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where Q(tj+1; tj , Qj) denotes the exact Q at t = tj+1 such that Q(tj ; tj , Qj) = Qj and

Qj =
(

cos(θj) sin(θj)
− sin(θj) cos(θj)

)
. (3.22)

To determine bounds on the perturbation E, from [9] (page 633) we have, see (3.5), that
ω ≤ maxj ωj where a bound for ωj is given in the following Lemma.

Lemma 3.4. If the local error in approximating θ on the jth time interval [tj , tj+1] is bounded

by
h2

j

2 Ωj where hj = tj+1 − tj, then for t ∈ [tj , tj+1], the error ||Ej || in the perturbation of the
upper triangular coefficient matrix function is bounded by

ωj ≤ 2(1 + γje
γj )2TOLje

γj/2 +
α2

j

1− αj
eγj/2(1 + γje

γj ) (3.23)

for γj =
∫ tj+1

tj
|1 + q(t)|dt, TOLj = h2

jΩje
γj/2[1 + (1 − eh2

jΩjγj )(1 + 1/(h2
jΩj))], provided αj =

TOLje
γj/2(1 + γje

γj ) < 1.

Proof. The proof follows by adapting the bounds obtained in Theorems 3.12 and 3.16 of [9] to
the form of the equation (1.2) and the parameterization of the equation for Q by the function θ
(2.1). By Theorem 3.12 of [9] we have that the norm of the difference of the coefficient matrix
functions is bounded as

||Ej || ≤ ||hjB̂j − hjBj || ≤ ||Lj ||+ α2
jδj(1 + δjνj)/(1− αj), αj < 1 (3.24)

where δj = minp[min(1, exp(
∫ tj+1

tj
Bpp(t)dt)]−1 = 1 and νj ≤ γje

γj/2 in our case. Again by
Theorem 3.12 of [9],

||Lj || ≤ 2(1 + δjνj)2TOLje
γj/2.

All that remains is to bound TOLj which we do using Theorem 3.16 of [9]. We have

TOLj ≤ ||N̂j ||eγj/2 + eγj/2[1− e−||N̂j ||γj ] + ||N̂j || · eγj/2[1− e−||N̂j ||γj ].

where ||N̂j || ≤ h2
jΩj which completes the proof.

4 Improved Bounds

In this section we show how the initial bounds, specifically the ρ(0) in Proposition 2.1, obtained
on the error in the orthogonal change of variables can be used as a starting point from which
improved bounds may be obtained. Our strategy is, given some potentially weak control on the
error in approximating θ, to bound the constant K so that using Lemma 3.2 and in particular
(3.11) we derive a stronger control on the error in approximating θ. The following two lemmas
establish a bound on K by perturbing from the K obtained with the approximate solution.

If a > 0 and d ≥ 0 are such that for T ≥ t ≥ s ≥ −T ,∫ t

s
(B11(τ)−B22(τ))dτ ≥ a(t− s)− d, (4.1)
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then

sup
t∈[−T,T ]

∫ t

−T
e−

R t
τ (B11(r)−B22(r))drdτ ≤ sup

t∈[−T,T ]

∫ t

−T
e−a(t−τ)+ddτ ≤ ed

a
:= K. (4.2)

The next two Lemmas provide a way to refine the error bound ρ. The idea is to use the solution
and an error bound, initially ρ(0), to obtain an improved error bound, ρ(1), via an improved K
and (3.11) and then use the solution and ρ(1) to obtain an improved ρ(2), etc..

Lemma 4.1. If Ψ(t) is the piecewise linear function that interpolates θj, j = 0, ..., N , and
θ(t) is the exact solution such that θ(−T ) = θ0 and |θ(tj) − θj | ≤ ρ, j = 0, ..., N , then for
p(t) = −2 cos(θ(t)) sin(θ(t))(1 + q(t)), t ∈ [tj , tj+1], there exists aj > 0 and dj ≥ 0 such that for
tj ≤ s ≤ tj+1, ∫ tj+1

s
p(r)dr ≥ aj(tj+1 − s)− dj . (4.3)

where for hj = tj+1 − tj and for

Yj = min
tj≤s≤tj+1

1
tj+1 − s

∫ tj+1

s
p̃(r)dr, p̃(r) defined in (4.8), (4.4)

aj =
{

h−1
j , hjYj < 1,

Yj , hjYj ≥ 1,
dj =

{
1− hjYj , hjYj < 1,

0, hjYj ≥ 1.
(4.5)

Proof. Let θj(t) denote the local exact solution for t ∈ [tj , tj+1] such that θj(tj) = θj . Then by a
standard Lipschitz/Gronwall argument since |θ(tj)− θj | ≤ ρ,

|θ(t)− θj(t)| ≤ eLjtρ, tj ≤ t ≤ tj+1. (4.6)

where Lj ≤ supt∈[tj ,tj+1] |1+ q(t)| is the local Lipschitz contant for (2.8) on [tj , tj+1]. For tj ≤ t ≤
tj+1, Ψ(t) is the Forward Euler method starting from θj with stepsize t− tj , so for tj ≤ t ≤ tj+1,

|θj(t)−Ψ(t)| ≤
h2

j

2
(

t− tj
tj+1 − tj

)2Ωj =
(t− tj)2

2
Ωj (4.7)

where Ωj = supt∈[tj ,tj+1] |1 + q(t)| ·max{1, |q(t)|}+ |q′(t)|. Thus, for s ∈ [tj , tj+1],∫ tj+1

s
p(r)dr = 2

∫ tj+1

s
(BΨ

11(r) + B
θj

11(r)−BΨ
11(r) + Bθ

11(r)−B
θj

11(r))dr

≥
∫ tj+1

s
[2BΨ

11(r)− (2eLj(r−tj)ρ + (r − tj)2Ωj)Lj ]dr =:
∫ tj+1

s
p̃(r)dr.

(4.8)

If hjYj < 1, then for s ∈ [tj , tj+1], aj = 1/hj , and dj = 1− hjYj ≥ 0,∫ tj+1

s
p(r)dr ≥

∫ tj+1

s
p̃(r)dr ≥ (tj+1−s)Yj = (tj+1−s)

[
1
hj
− (1− hjYj)

hj

]
≥ 1

hj
(tj+1−s)−(1−hjYj).

(4.9)
If hjYj ≥ 1, then for s ∈ [tj , tj+1], aj = Yj , and dj = 0,∫ tj+1

s
p(r)dr ≥

∫ tj+1

s
p̃(r)dr ≥ (tj+1 − s)Yj = aj(tj+1 − s). (4.10)
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Lemma 4.2. If Ψ(t) is the piecewise linear function that interpolates θj, j = 0, ..., N , and
θ(t) is the exact solution such that θ(−T ) = θ0 and |θ(tj) − θj | ≤ ρ, j = 0, ..., N , then for
p(t) = −2 cos(θ(t)) sin(θ(t))(1 + q(t)) and n = 1, ..., N ,∫ tn

−T
e−

R tn
s p(r)drds ≤

n−1∑
j=0,dj=0

(1− e−Yjhj )
Yj

+ (e− 1) ·
n−1∑

j=0,aj=h−1
j

hje
−hjYj =: Kn, (4.11)

where Yj , aj , and dj are given in Lemma 4.1.

Proof. The proof is a direct consequence of the following estimate∫ tn

−T
e−

R tn
s p(r)drds =

n−1∑
j=0

∫ tj+1

tj

e−
R tj+1

s p(r)drds ≤
n−1∑
j=0

∫ tj+1

tj

e−aj(tj+1−s)+djds =
n−1∑
j=0

edj

aj
(1−e−ajhj ).

(4.12)

4.1 Convergence

We next show that under reasonable conditions we can produce a convergent sequence {ρ(j)} of
bounds on the global error in the approximation of θ. Recall from (3.11) in Lemma 3.2 that
ρ = αKω. We set α = 2, keep ω fixed, and thus define for j = 0, 1, ...

ρ(j+1) = 2K(j+1)ω, K(j+1) := min{K(j),K
(j+1)
N } (4.13)

and K
(j+1)
N is the KN obtained from Lemmas 4.1 and 4.2 using the previous bound ρ(j).

Theorem 4.3. If ρ(1) ≤ ρ(0), then there exists ρ := limj→∞ ρ(j) and | sin(θ(tj)− θj)| ≤ ρ.

Proof. The ρ(j) are defined using (4.13). We show that limj→∞ ρ(j) exists by constructing a
monotone sequence, the proof of monotonicity is by induction. If ρ(1) ≤ ρ(0), then we must show
that ρ(j+1) ≤ ρ(j) for j = 1, 2, .... This clearly holds if K(j+1) ≤ K(j) which follows from (4.13).

Corollary 4.4. Let K(1) denote the value of KN obtained in Lemma 4.1 and 4.2 using ρ := ρ(0).
If ρ(1) ≤ ρ(0) and for j = 0, ..., N − 1,

Y j = min
tj≤s≤tj+1

1
tj+1 − s

∫ tj+1

s
[2BΨ

11(r)− (r − tj)2ΩjLj ]dr < h−1
j , (4.14)

then K(n+1) < K(n) and ρ(n+1) < ρ(n) for n = 1, 2, ....

Proof. This follows since KN in Lemma 4.2 decreases as ρ decreases provided hjYj < 1 which
follows from (4.4) and (4.14).
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4.2 Minimization

To determine Yj and hence aj and dj we must determine a lower bound on 1
tj+1−s

∫ tj+1

s p̃(r)dr as
in (4.8):

1
tj+1 − s

∫ tj+1

s
p̃(r)dr =

1
tj+1 − s

∫ tj+1

s
[2BΨ

11(r)− (2eLj(r−tj)ρ + (r − tj)2Ωj)Lj ]dr

=
1

tj+1 − s

[∫ tj+1

s
2BΨ

11(r)dr − 2(eLjhj − eLj(s−tj))ρ− ΩjLj

3
(h3

j − (s− tj)3)
]
.

(4.15)

Using the trapezoidal rule to approximate
∫ tj+1

s 2BΨ
11(r)dr and employing its error formula we

have that

Yj(ρ) ≥ min

{
BΨ

11(tj) + BΨ
11(tj+1)−

1
6
h2

j sup
tj≤t≤tj+1

| d
2

dt2
BΨ

11(t)|, BΨ
11(tj+1)

}
− 2Lje

Ljhjρ− h2
jΩjLj

(4.16)
and

d2

dt2
BΨ

11(t) = −4 cos(2Ψ(t))
(

θj+1 − θj

hj

)
q′(t)− sin(2Ψ(t))

[
q′′(t)− 4

(
θj+1 − θj

hj

)2

(1 + q(t))

]
.

(4.17)
If (4.14) is satisfied, then

KN (ρ) := (e− 1) ·
N−1∑
j=0

hje
−hjYj(ρ) ≤ (e− 1) sup

0≤j≤N−1

{
e2ρLjhjeLjhj

} N−1∑
j=0

hje
−hjZj (4.18)

where Zj = Yj − 2ρLjhje
Ljhj .

Finally, we note that what is needed is to bound the K not for B(t) but for B̃(t) where B̃(t)
is the piecewise constant upper triangular matrix function where for i = 1, 2,

B̃ii(t) =
1
hj

∫ tj+1

tj

Bii(s)ds, tj ≤ t < tj+1.

We have

sup
t≥−T

∫ t

−T
e−

R t
τ (B̃11(r)−B̃22(r))drdτ ≤ e4κh sup

t≥−T

∫ t

−T
e−

R t
τ (B11(r)−B22(r))drdτ (4.19)

where h = maxj hj , since for all j and i = 1, 2,∫ tj+1

tj

Bii(r)dr =
∫ tj+1

tj

B̃ii(r)dr, (4.20)

|
∫ t

tj

(B11(r)−B22(r))dr| ≤ κ · hj , |
∫ t

tj

(B̃11(r)− B̃22(r))dr| ≤ κ · hj , (4.21)

for tj < t < tj+1, and

|
∫ tk

τ
(B11(r)−B22(r))dr| ≤ κ · hj , |

∫ tk

τ
(̃B11(r)− B̃22(r))dr| ≤ κ · hj , (4.22)

for tk−1 < τ < tk.
Thus, to determine ρ := limj→∞ ρ(j) we have for h = maxj hj ,

ρ(j+1) = 2ω(e− 1)e4κh sup
0≤j≤N−1

{
e2ρ(j)LjhjeLjhj

} N−1∑
j=0

hje
−hjZj ≡ Ceχρ(j)

. (4.23)
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5 A Perturbation Result

In this section we prove a perturbation result that allows for continuation in a problem parameter.
The idea is to avoid the need for a priori forward error estimates and instead use the information
(bound on the error in the computed θ and bound on the integral separation constants) we have
previously obtained to continue to a nearby problem. Generally we expect this to give a better
error bound than the a priori bounds while still having the ability to improve the error bound for
the new parameter value.

Consider two problems with coefficient matrix functions A0(t) and A1(t) corresponding to
functions q0(t) and q1(t), respectively. We assume that for the A0 problem we have a uniform
bound ρ on the approximation of θ(t) that brings the problems to upper triangular. In addition,
we assume that the information used to approximate the constant K is available.

Theorem 5.1. Assume for the A0 problem that for all j, |θ(tj)− θj | ≤ ρ and∫ tj+1

s
p(r)dr ≥ aj(tj+1 − s)− dj , p(t) = −2 cos(θ(t)) sin(θ(t))(1 + q0(t)), tj ≤ s ≤ tj+1 (5.1)

with aj , dj given in (4.5) and K := KN as in Lemma 4.2. Let κi = supt |1 + qi(t)| for i = 0, 1
and assume supt |q1(t)− q0(t)| ≤ δ. Suppose we approximate θ for the A1 problem with {φj} such
that the perturbation matrix function is uniformly bounded by ω. If there exists α0, α1 > 1 such
that

δ < ω+(α0,K, κ0), and ω < ω+(α1, K̃, κ1) (5.2)

where

K̃ =
N−1∑

j=0,d̃j=0

(1− e−Ỹjhj )
Ỹj

+ (e− 1) ·
N−1∑

j=0,ãj=h−1
j

hje
−hj Ỹj (5.3)

(Ỹj , ãj , d̃j are defined in the proof analogously to Yj , aj , dj, respectively, in Lemma 4.1), then
| sin(φ(tj)− φj)| ≤ ρ where ρ = α1K̃ω.

Proof. Let φ(t) denote the exact θ that brings the A1 problem to upper triangular. Since θ(t)
brings A0 to the upper triangular B0, we can use θ(t) to construct a perturbed upper triangular
problem B0(t) + E(t) for the A1 problem with supt ||E(t)|| ≤ δ. If the first inequality in (5.2)
holds, then by Lemma 3.2, | sin(θ(t)− φ(t))| ≤ ρ∗ := α0Kδ.

Next we proceed as in Lemma 4.1 to obtain a bound of the form

−2
∫ tj+1

s
cos(φ(r)) sin(φ(r))(1 + q1(r))dr ≥ ãj(tj+1 − s)− d̃j , s ∈ [tj , tj+1]. (5.4)

By Lemma 4.1, we have

−2
∫ tj+1

s
cos(θ(r)) sin(θ(r))(1 + q0(r))dr ≥ aj(tj+1 − s)− dj (5.5)

and since

−2 cos(φ(t)) sin(φ(t))(1 + q1(t)) + 2 cos(θ(t)) sin(θ(t))(1 + q0(t)) ≥ −2[δ + κ0ρ
∗] (5.6)

we set Ỹj = Yj − 2[δ + κ0ρ
∗] where Yj is defined in Lemma 4.1.

Thus, by Lemma 4.2 with Ỹj , ãj , d̃j replacing Yj , aj , dj , respectively, K̃ is given as in (5.3),
and if the second inequality in (5.2) holds, then an application of Lemma 3.2 completes the proof.

The perturbation result allows for the continuation to a new parameter value while avoiding
the need for a crude a priori estimate of ρ(0).
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6 Example

To illustrate our results for problems with constant tails, we consider the example where q(t) is
given by

q(t) =


1− a(t + T ), −T ≤ t ≤ −T + 2/a,
−1 + b sin(c(t + T − 2/a)), −T + 2/a ≤ t ≤ T − 2/a,
1 + a(t− T ), T − 2/a ≤ t ≤ T,

(6.1)

for a > 0, 2T − 4/a > 0, b ∈ IR, and c ∈ IR such that c(2T − a/4) = nπ for some n ∈ ZZ. Then
Ω = max{2 + a, b2 + |b|(1 + |c|)} in (2.13), κ = max{2, |b|} in Lemma 3.2. This problem allows
us to vary the amplitude and frequency of the potential q(t) that is far from the case of pure
rotation (q(t) ≡ −1) and the case of no rotation (q(t) = 1 and θ(−T ) = −π/4). The examples
we consider illustrate that the combined analytical/numerical result developed here can capture
exponential dichotomy or lack of exponential dichtomy to a resolution proportional to the error
in the approximation of θ.

To employ (4.16) and (4.17) we need

q′(t) =


−a, −T ≤ t ≤ −T + 2/a,
bc cos(c(t + T − 2/a)), −T + 2/a ≤ t ≤ T − 2/a,
a, T − 2/a ≤ t ≤ T,

(6.2)

and

q′′(t) =


0, −T ≤ t ≤ −T + 2/a,

−bc2 sin(c(t + T − 2/a)), −T + 2/a ≤ t ≤ T − 2/a,
0, T − 2/a ≤ t ≤ T.

(6.3)

Our strategy is to continue in b from b = 0 where we can obtain reasonable a priori bounds
since for b = 0, q(t) = −1 for −T + 2/a ≤ t ≤ T − 2/a over which there is no error in numerical
integration. As b increases for the a priori estimate to be useful requires small timesteps which
may force the complexity to become unacceptable. We fix a = 102 and consider two values
of T , T = 9π/4 and T = 19π/4. Besides continuing in the parameter b, we vary the value
of c that controls the frequency of the sine function in (6.1) by varying the integer n where
nπ = c(2T − a/4). When continuing we choose the value of δ in (5.2) to be ω+(2,K, κ0)/2 and
take α1 = 2 in the second inequality in (5.2).

For T = 9π/4, we exhibit in Figure 1 a plot of b versus θN for various values of n. For the
values of b for which θ(T ) = π/4 + kπ for some integer k there is no exponential dichotomy since
in this case there exists a non-trivial bounded solution, e.g. x(0) = e1. The values of K, δ, and ρ
obtained are fairly uniform with K ≈ 24.3, δ ≈ 8.9E−3, and ρ ≈ 1.05E−4. In Figure 1 the values
of θN were plotted in increments of b of 10−1. The figure illustrates the robust, non-monotone
behavior in the θN value as a function of both b and n.

To determine error bars we examine Table 1. We report on three different values of ρ(0) that
were used only for b = 0 to begin the calculations. We then continued in b for the different values
of n considered in Figure 1. The values of K, ω+, and δ, the size of the perturbation in b allowed
in Theorem 5.1, are fairly uniform in the values of n and b considered here. In Table 1 we see
that by decreasing the value of ρ(0) employed the error bar (of size ρ) about the computed θ
value is decreased and one can restrict to a narrow range the value of b for which there is not
exponential dichotomy. We are able to resolve to a resolution ρ obtained in Table 1 values of b
and n in Figure 1 for which there is not exponential dichtomy.

For T = 19π/4 and a = 102 we consider a more rapidly oscillating problem and restrict
attention to smaller values of the amplitude b. In Figure 2 we plot the values of θN versus b for
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n = 80 for increments in b of size 10−4. For these parameters values there are many values of b
in the plot that correspond to no exponential dichotomy and the range of b in which there is a b∗

such that the problem does not have exponential dichotomy is determined for different values of
ρ(0) (again only employed for b = 0) from the value ρ in Table 2.

 0

 2

 4
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 10

 12

 14

 16

 0  0.5  1  1.5  2  2.5

"pi/4+k*pi"
"n=1"
"n=2"
"n=3"
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Figure 1: Plot of (b, θN ) for different values of n for the example with a = 102 and T = 9π/4
which shows that there is exponential dichotomy or lack of exponential dichotomy for both fixed b
and varying n as well as fixed n and varying b.

7 Exponential Dichotomy for Asymptotically Constant Tails

In this section we show how to extend these results to the case of asymptotically constant tails.
Recall that θ̇(t) = sin2(θ(t))− q(t) cos2(θ(t)).

Lemma 7.1. Suppose that q(t) → 1 uniformly as t →∞, and for t ≥ T , |1−q(t)| < ε+T for some
0 < ε+T � 1. Let δ+T = 1/2 arcsin(ε+T /(2−ε+T )). Then, for any θ0 ∈ (−3π/4+δ+T , π/4−δ+T ),
the solution θ(t) with θ(T ) = θ0 satisfies θ(t) ∈ (−3π/4 + δ+T , π/4 − δ+T ) for t ≥ T and
θ(t) → −π/4 as t →∞.

Proof. First of all, by [24], the assumption that q(t) → 1 uniformly as t →∞ implies that either
θ(t) → −π/4 or θ(t) → π/4 (mod π) as t →∞. We will show that, if θ0 ∈ (−3π/4 + δ+T , π/4−
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Values of N,ω, and ρ obtained with K ≈ 24.3, ω+ ≈ 2.1E − 4, and δ ≈ 1.05E − 4.

ρ(0) N ω ρ

1.E − 3 30, 025 4.5E − 5 2.2E − 3
1.E − 4 300, 249 4.5E − 7 2.2E − 5
1.E − 5 3, 002, 481 4.5E − 9 2.2E − 7

Table 1: Values were essentially uniform for b and n considered in Figure 1.

Values of N,ω, and ρ obtained with K ≈ 51.3, ω+ ≈ 4.7E − 5, and δ ≈ 2.4E − 5.

ρ(0) N ω ρ

1.E − 3 63, 386 4.5E − 5 4.6E − 3
1.E − 4 633, 857 4.5E − 7 4.6E − 5
1.E − 5 6, 338, 570 4.5E − 9 4.6E − 7

Table 2: Values were essentially uniform for b considered in Figure 2.

δ+T ), then the solution θ(t) with θ(T ) = θ0 satisfies θ(t) ∈ (−3π/4 + δ+T , π/4− δ+T ) for t ≥ T ,
and hence, θ(t) → −π/4 as t →∞.

Note that, if θ(t0) = π/4− δ+T for some t0 > T , then

2θ′(t0) = 2[sin2(θ(t0))− q(t0) cos2(θ(t0))]
= 1− cos(2θ(t0))− q(t0)(1 + cos(2θ(t0)))
= (1− q(t0))− (1 + q(t0)) cos(π/2− 2δ+T )
< ε+T − (2− ε+T ) sin(2δ+T ) = 0.

Similarly, if θ(t0) = −3π/4 + δ+T for some t0 > T , then

2θ′(t0) = (1− q(t0))− (1 + q(t0)) cos(−3π/2 + 2δ+T ) > −ε+T + (2− ε+T ) sin(2δ+T ) = 0.

Therefore, the interval (−3π/4 + δ+T , π/4 − δ+T ) is positively invariant for t ≥ T ; that is, if
θ0 ∈ (−3π/4 + δ+T , π/4 − δ+T ), then the solution θ(t) with θ(T ) = θ0 satisfies θ(t) ∈ (−3π/4 +
δ+T , π/4− δ+T ) for t ≥ T , and hence, θ(t) → −π/4 as t →∞.

Lemma 7.2. Suppose that q(t) → 1 uniformly as t → −∞, and for t ≤ −T , |1− q(t)| < ε−T for
some 0 < ε−T � 1. Let δ−T = 1/2 arcsin(ε−T /(2−ε−T )). Then, for any θ0 ∈ (−π/4+δ−T , 3π/4−
δ−T ), the solution θ(t) with θ(−T ) = θ0 satisfies θ(t) → π/4 as t → −∞. In particular, there
exists θ−T ∈ (−π/4 − δ−T ,−π/4 + δ−T ) such that the solution θ(t) with θ(−T ) = θ−T satisfies
θ(t) → −π/4 as t → −∞.

Proof. Using the same proof as above, one can show that the interval (−π/4 + δ−T , 3π/4− δ−T )
is negatively invariant for t ≤ −T ; that is, if θ0 ∈ (−π/4 + δ−T , 3π/4 − δ−T ), then the solution
θ(t) with θ(−T ) = θ0 satisfies θ(t) ∈ (−π/4 + δ−T , 3π/4− δ−T ) for t ≤ −T .

In view of the fact that solutions θ(t) of the equation are symmetric with respect to θ = π,
the interval (3π/4 + δ−T , 7π/4 − δ−T ) is also negatively invariant for t ≤ −T . The assumption
that q(t) → 1 uniformly as t → −∞ implies that there does exist θ−T so that the solution θ(t)
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Figure 2: Plot of (b, θN ) for n = 80 for the example with a = 102 and T = 19π/4. May resolve to
within ρ as in Table 2 the values of b for which there is not exponential dichotomy.

with θ(−T ) = θ−T satisfies θ(t) → −π/4 as t → −∞. We then claim that there exists a such
θ−T ∈ (−π/4− δ−T ,−π/4 + δ−T ) (and one in (3π/4− δ−T , 3π/4 + δ−T )).

Theorem 7.3. Assume there exists δ−T > 0 such that for some θ−T with |θ−T + π/4| < δ−T

the solution of the initial value problem (2.8), θ(−T ) = θ−T satisfies θ(t) → −π/4 as t → −∞.
Assume further that there exists δ+T > 0 such that for any θ+T with |θ+T − π/4| > δ+T the
solution of the initial value problem (2.8), θ(+T ) = θ+T satisfies θ(t) 6→ π/4 as t → ∞. Then
there exists ρ > 0 such that if for θN = θN modπ, |θN − π/4| > ρ + δ+T , then the system (1.2)
where q(t) → 1 as t → ±∞ has exponential dichotomy.

Proof. Overall logic: Show the existence of θ(t) defined for t ∈ IR such that mod π, θ(t) → −π/4
as t → ±∞.

Modifications to the ω and K needed to determine ρ:

• For ω defined in (3.23), TOL 7→ TOL + δ−T eL0h0 for j = 0.

• The calculation of Y0 and hence K1 and hence K ≡ KN becomes

Y0 = min
t0≤s≤t1

1
t1 − s

∫ t0

s
2BΨ

11(r)− (2eL0(r−t0)δ−T + (r − t0)2Ω0)L0dr (7.1)
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Thus, if (3.23) with TOL 7→ TOL + δ−T eL0h0 only for j = 0, gives the same value ω as in the
case of constant tails and δ−T ≤ ρ for ρ the value obtained in the case of the constant tails, then
the value ρ obtained in the case of constant tails may be employed in the case of asymptotically
constant tails. Otherwise, a new, potentially larger, value of ρ may be obtained.

8 Conclusions

In this paper we have developed techniques for determining whether a class of linear nonau-
tonomous systems has exponential dichotomy. The technique is a combined analytical and nu-
merical approach and relies on an error analysis for an orthogonal change of variables. If the
computed system has enough hyperbolicity relative to the numerical error, then the exponential
dichtomy may be continued to the original system. Techniques are developed based on using crude
bounds and then obtaining refined bounds for a fixed problem parameter and also by continuing
in a problem parameter using refined bounds obtained for the previous problem parameter. In
particular, for the equation (1.2) considered here we are able to compute in a practical way all
quantities necessary to obtain rigorous error bound on the solution to (2.8). In turn we are able
to resolve rigorously small neighborhoods in parameter space where there exists a problem with
no ED. The bounds obtained are much sharper than those that one might obtain using existing
classical a priori error techniques. In addition, we are able to determine much more than is possi-
ble with Lyapunov type theorems that in our context perclude no ED by restricting the solution
(2.8) so that a connection between θ(−T ) = −π/4 and θ(T ) = π/4 + jπ, j ∈ ZZ is not possible.

We view this as a starting point and hope to develop further the ideas that form the basis
of this paper. In particular, the basic ideas developed here are applicable to higher dimensional
problems and the results have a wide range of applications.
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